1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- tracking:
- enabled: true
- auth:
- enabled: true
- username: vib-user
- password: "ComplicatedPassword123!4"
- extraOverrides:
- default_permission: WRITE
- containerPorts:
- http: 8100
- service:
- type: LoadBalancer
- ports:
- http: 80
- serviceAccount:
- create: true
- automountServiceAccountToken: true
- containerSecurityContext:
- enabled: true
- runAsUser: 1002
- runAsGroup: 1002
- runAsNonRoot: true
- readOnlyRootFilesystem: true
- allowPrivilegeEscalation: false
- capabilities:
- drop: ["ALL"]
- podSecurityContext:
- enabled: true
- fsGroup: 1002
- seccompProfile:
- type: RuntimeDefault
- persistence:
- enabled: true
- mountPath: /vib-mlflow/test
- metrics:
- enabled: true
- run:
- enabled: true
- useJob: true
- source:
- launchCommand: "python vib_test.py"
- configMap:
- # Example taken from the MLFlow UI (https://mlflow.org/docs/latest/ml/tracking/tutorials/local-database#step-3-start-logging)
- vib_test.py: |
- import mlflow
- from sklearn.model_selection import train_test_split
- from sklearn.datasets import load_diabetes
- from sklearn.ensemble import RandomForestRegressor
- mlflow.sklearn.autolog()
- db = load_diabetes()
- X_train, X_test, y_train, y_test = train_test_split(db.data, db.target)
- # Create and train models.
- rf = RandomForestRegressor(n_estimators=100, max_depth=6, max_features=3)
- rf.fit(X_train, y_train)
- # Use the model to make predictions on the test dataset.
- predictions = rf.predict(X_test)
|