Sfoglia il codice sorgente

feat: 增加两个模型下载

tuon 1 anno fa
parent
commit
3e870b9762
4 ha cambiato i file con 71 aggiunte e 173 eliminazioni
  1. 69 65
      README.md
  2. 0 106
      README_CN.md
  3. 1 1
      docs/full_develop_cn.md
  4. 1 1
      docs/quick_start_cn.md

+ 69 - 65
README.md

@@ -1,69 +1,71 @@
-English | [简体中文](README_CN.md)
+简体中文 | [English](README.md)
 
 # Image Matting
 
-## Contents
-* [Introduction](#Introduction)
-* [Update Notes](#Update-Notes)
-* [Community](#Community)
-* [Models](#Models)
-* [Tutorials](#Tutorials)
-* [Acknowledgement](#Acknowledgement)
-* [Citation](#Citation)
+## 模型下载
+- [通用目标抠图](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w48-composition.zip)
+- [人物抠图](https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams)
 
+## 目录
+* [简介](#简介)
+* [更新动态](#更新动态)
+* [技术交流](#技术交流)
+* [模型库](#模型库)
+* [使用教程](#使用教程)
+* [社区贡献](#社区贡献)
+* [学术引用](#学术引用)
 
-## Introduction
 
-Image Matting is the technique of extracting foreground from an image by calculating its color and transparency.
-It is widely used in the film industry to replace background, image composition, and visual effects.
-Each pixel in the image will have a value that represents its foreground transparency, called Alpha.
-The set of all Alpha values in an image is called Alpha Matte.
-The part of the image covered by the mask can be extracted to complete foreground separation.
+## 简介
+
+Image Matting(精细化分割/影像去背/抠图)是指借由计算前景的颜色和透明度,将前景从影像中撷取出来的技术,可用于替换背景、影像合成、视觉特效,在电影工业中被广泛地使用。
+影像中的每个像素会有代表其前景透明度的值,称作阿法值(Alpha),一张影像中所有阿法值的集合称作阿法遮罩(Alpha Matte),将影像被遮罩所涵盖的部分取出即可完成前景的分离。
 
 
 <p align="center">
 <img src="https://user-images.githubusercontent.com/30919197/179751613-d26f2261-7bcf-4066-a0a4-4c818e7065f0.gif" width="100%" height="100%">
 </p>
 
-## Update Notes
+## 更新动态
 * 2022.11
-  * **Release self developed lite matting SOTA model PP-MattingV2**. Compared with MODNet, the inference speed of PP-MattingV2 is increased by 44.6%, and the average error is decreased by 17.91%.
-  * Adjust the document structure and improve the model zoo information.
-  * [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) support PP-MattingV2, PP-Matting, PP-HumanMatting and MODNet models.
+  * **开源自研轻量级抠图SOTA模型PP-MattingV2**。对比MODNet, PP-MattingV2推理速度提升44.6%, 误差平均相对减小17.91%。
+  * 调整文档结构,完善模型库信息。
+  * [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)部署支持PP-MattingV2, PP-Matting, PP-HumanMatting和MODNet模型。
 * 2022.07
-  * Release PP-Matting code. Add ClosedFormMatting, KNNMatting, FastMatting, LearningBaseMatting and RandomWalksMatting traditional machine learning algorithms.
-  Add GCA model.
-  * upport to specify metrics for evaluation. Support to specify metrics for evaluation.
+  * 开源PP-Matting代码;新增ClosedFormMatting、KNNMatting、FastMatting、LearningBaseMatting和RandomWalksMatting传统机器学习算法;新增GCA模型。
+  * 完善目录结构;支持指定指标进行评估。
 * 2022.04
-  * **Release self developed high accuracy matting SOTA model PP-Matting**. Add PP-HumanMatting high-resolution human matting model.
-  * Add Grad, Conn evaluation metrics. Add foreground evaluation funciton, which use [ML](https://arxiv.org/pdf/2006.14970.pdf) algorithm to evaluate foreground when prediction or background replacement.
-  * Add GradientLoss and LaplacianLoss. Add RandomSharpen, RandomSharpen, RandomReJpeg, RSSN data augmentation strategies.
-
+  * **开源自研高精度抠图SOTA模型PP-Matting**;新增PP-HumanMatting高分辨人像抠图模型。
+  * 新增Grad、Conn评估指标;新增前景评估功能,利用[ML](https://arxiv.org/pdf/2006.14970.pdf)算法在预测和背景替换时进行前景评估。
+  * 新增GradientLoss和LaplacianLoss;新增RandomSharpen、RandomSharpen、RandomReJpeg、RSSN数据增强策略。
 * 2021.11
-  * **Matting Project is released**, which Realizes image matting function.
-  * Support Matting models: DIM, MODNet. Support model export and python deployment. Support background replacement function. Support human matting deployment in Android.
-
-## Community
-
-* If you have any questions, suggestions and feature requests, please create an issues in [GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues).
-* Welcome to scan the following QR code and join paddleseg wechat group to communicate with us.
+  * **Matting项目开源**, 实现图像抠图功能。
+  * 支持Matting模型:DIM, MODNet;支持模型导出及Python部署;支持背景替换功能;支持人像抠图Android部署。
+
+## 技术交流
+
+* 如果大家有使用问题和功能建议, 可以通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues)提issue。
+* **欢迎加入PaddleSeg的微信用户群👫**(扫码填写简单问卷即可入群),大家可以和值班同学、各界大佬直接进行交流,还可以**领取30G重磅学习大礼包🎁**
+  * 🔥 获取深度学习视频教程、图像分割论文合集
+  * 🔥 获取PaddleSeg的历次直播视频,最新发版信息和直播动态
+  * 🔥 获取PaddleSeg自建的人像分割数据集,整理的开源数据集
+  * 🔥 获取PaddleSeg在垂类场景的预训练模型和应用合集,涵盖人像分割、交互式分割等等
+  * 🔥 获取PaddleSeg的全流程产业实操范例,包括质检缺陷分割、抠图Matting、道路分割等等
 <div align="center">
 <img src="https://user-images.githubusercontent.com/30883834/213601179-0813a896-11e1-4514-b612-d145e068ba86.jpeg"  width = "200" />  
 </div>
 
-## Models
-
-For the widely application scenario -- human matting, we have trained and open source the ** high-quality human matting models**.
-According the actual application scenario, you can directly deploy or finetune.
+## 模型库
 
-The model zoo includes our self developded high accuracy model PP-Matting and lite model PP-MattingV2.
-- PP-Matting is a high accuracy matting model developded by PaddleSeg, which realizes high-resolution image matting under semantic guidance by the design of Guidance Flow.
-    For high accuracy, this model is recommended. Two pre-trained models are opened source with 512 and 1024 resolution level.
+针对高频应用场景 —— 人像抠图,我们训练并开源了**高质量人像抠图模型库**。根据实际应用场景,大家可以直接部署应用,也支持进行微调训练。
 
-- PP-MattingV2 is a lite matting SOTA model developed by PaddleSeg. It extracts high-level semantc informating by double-pyramid pool and spatial attention,
-    and uses multi-level feature fusion mechanism for both semantic and detail prediciton.
+模型库中包括我们自研的高精度PP-Matting模型和轻量级PP-MattingV2模型。
+- PP-Matting是PaddleSeg自研的高精度抠图模型,通过引导流设计实现语义引导下高分辨率图像抠图。追求更高精度,推荐使用该模型。
+    且该模型提供了512和1024两个分辨率级别的预训练模型。
+- PP-MattingV2是PaddleSeg自研的轻量级抠图SOTA模型,通过双层金字塔池化及空间注意力提取高级语义信息,并利用多级特征融合机制兼顾语义和细节的预测。
+    对比MODNet模型推理速度提升44.6%, 误差平均相对减小17.91%。追求更高速度,推荐使用该模型。
 
-| Model | SAD | MSE | Grad | Conn |Params(M) | FLOPs(G) | FPS | Config File | Checkpoint | Inference Model |
+| 模型 | SAD | MSE | Grad | Conn |Params(M) | FLOPs(G) | FPS | Config File | Checkpoint | Inference Model |
 | - | - | -| - | - | - | - | -| - | - | - |
 | PP-MattingV2-512   |40.59|0.0038|33.86|38.90| 8.95 | 7.51 | 98.89 |[cfg](../configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmattingv2-stdc1-human_512.zip) |
 | PP-Matting-512     |31.56|0.0022|31.80|30.13| 24.5 | 91.28 | 28.9 |[cfg](../configs/ppmatting/ppmatting-hrnet_w18-human_512.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_512.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w18-human_512.zip) |
@@ -74,28 +76,27 @@ The model zoo includes our self developded high accuracy model PP-Matting and li
 | MODNet-HRNet_W18   |35.55|0.0035|31.73|34.07| 10.2 | 28.5 | 62.6 |[cfg](../configs/modnet/modnet-hrnet_w18.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/modnet-hrnet_w18.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/modnet-hrnet_w18.zip) |
 | DIM-VGG16          |32.31|0.0233|28.89|31.45| 28.4 | 175.5| 30.4 |[cfg](../configs/dim/dim-vgg16.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/dim-vgg16.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/dim-vgg16.zip) |
 
-**Note**:
-* The dataset for metrics is composed of PPM-100 and human part of AIM-500, with a total of 195 images, which named [PPM-AIM-195](https://paddleseg.bj.bcebos.com/matting/datasets/PPM-AIM-195.zip).
-* The model default input size is (512, 512) while calculating FLOPs and FPS and the GPU is Tesla V100 32G. FPS is calculated base on Paddle Inference.
-* DIM is a trimap-base matting method, which metrics are calculated in transition area.
-    If no trimap image is provided, the area  0<alpha<255 is used as the transition area after dilation erosion with a radius of 25 pixels.
-
-## Tutorials
-* [Online experience](docs/online_demo_en.md)
-* [Quick start](docs/quick_start_en.md)
-* [Full development](docs/full_develop_en.md)
-* [Human matting android deployment](deploy/human_matting_android_demo/README.md)
-* [Human matting .NET deployment](https://gitee.com/raoyutian/PaddleSegSharp)
-* [Dataset preparation](docs/data_prepare_en.md)
-* AI Studio tutorials
-  * [The Matting tutorial of PaddleSeg](https://aistudio.baidu.com/aistudio/projectdetail/3876411?contributionType=1)
-  * [The image matting tutorial of PP-Matting](https://aistudio.baidu.com/aistudio/projectdetail/5002963?contributionType=1)
-
-## Acknowledgement
-* Thanks [Qian bin](https://github.com/qianbin1989228) for their contributons.
-* Thanks for the algorithm support of [GFM](https://arxiv.org/abs/2010.16188).
-
-## Citation
+**注意**:
+* 指标计算数据集为PPM-100和AIM-500中的人像部分共同组成,共195张,[PPM-AIM-195](https://paddleseg.bj.bcebos.com/matting/datasets/PPM-AIM-195.zip)。
+* FLOPs和FPS计算默认模型输入大小为(512, 512), GPU为Tesla V100 32G。FPS基于Paddle Inference预测库进行计算。
+* DIM为trimap-based的抠图方法,指标只计算过度区域部分,对于没有提供trimap的情况下,默认将0<alpha<255的区域以25像素为半径进行膨胀腐蚀后作为过度区域。
+
+## 使用教程
+* [在线体验](docs/online_demo_cn.md)
+* [快速体验](docs/quick_start_cn.md)
+* [全流程开发](docs/full_develop_cn.md)
+* [人像抠图Android部署](deploy/human_matting_android_demo/README_CN.md)
+* [人像抠图.NET部署](https://gitee.com/raoyutian/PaddleSegSharp)
+* [数据集准备](docs/data_prepare_cn.md)
+* AI Studio第三方教程
+  * [PaddleSeg的Matting教程](https://aistudio.baidu.com/aistudio/projectdetail/3876411?contributionType=1)
+  * [PP-Matting图像抠图教程](https://aistudio.baidu.com/aistudio/projectdetail/5002963?contributionType=1)
+
+## 社区贡献
+* 感谢[钱彬(Qianbin)](https://github.com/qianbin1989228)等开发者的贡献。
+* 感谢Jizhizi Li等提出的[GFM](https://arxiv.org/abs/2010.16188) Matting框架助力PP-Matting的算法研发。
+
+## 学术引用
 ```
 @article{chen2022pp,
   title={PP-Matting: High-Accuracy Natural Image Matting},
@@ -104,3 +105,6 @@ The model zoo includes our self developded high accuracy model PP-Matting and li
   year={2022}
 }
 ```
+
+## 参考文档
+https://gitee.com/paddlepaddle/PaddleSeg/blob/release/2.8/Matting/docs/quick_start_cn.md

+ 0 - 106
README_CN.md

@@ -1,106 +0,0 @@
-简体中文 | [English](README.md)
-
-# Image Matting
-
-## 目录
-* [简介](#简介)
-* [更新动态](#更新动态)
-* [技术交流](#技术交流)
-* [模型库](#模型库)
-* [使用教程](#使用教程)
-* [社区贡献](#社区贡献)
-* [学术引用](#学术引用)
-
-
-## 简介
-
-Image Matting(精细化分割/影像去背/抠图)是指借由计算前景的颜色和透明度,将前景从影像中撷取出来的技术,可用于替换背景、影像合成、视觉特效,在电影工业中被广泛地使用。
-影像中的每个像素会有代表其前景透明度的值,称作阿法值(Alpha),一张影像中所有阿法值的集合称作阿法遮罩(Alpha Matte),将影像被遮罩所涵盖的部分取出即可完成前景的分离。
-
-
-<p align="center">
-<img src="https://user-images.githubusercontent.com/30919197/179751613-d26f2261-7bcf-4066-a0a4-4c818e7065f0.gif" width="100%" height="100%">
-</p>
-
-## 更新动态
-* 2022.11
-  * **开源自研轻量级抠图SOTA模型PP-MattingV2**。对比MODNet, PP-MattingV2推理速度提升44.6%, 误差平均相对减小17.91%。
-  * 调整文档结构,完善模型库信息。
-  * [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)部署支持PP-MattingV2, PP-Matting, PP-HumanMatting和MODNet模型。
-* 2022.07
-  * 开源PP-Matting代码;新增ClosedFormMatting、KNNMatting、FastMatting、LearningBaseMatting和RandomWalksMatting传统机器学习算法;新增GCA模型。
-  * 完善目录结构;支持指定指标进行评估。
-* 2022.04
-  * **开源自研高精度抠图SOTA模型PP-Matting**;新增PP-HumanMatting高分辨人像抠图模型。
-  * 新增Grad、Conn评估指标;新增前景评估功能,利用[ML](https://arxiv.org/pdf/2006.14970.pdf)算法在预测和背景替换时进行前景评估。
-  * 新增GradientLoss和LaplacianLoss;新增RandomSharpen、RandomSharpen、RandomReJpeg、RSSN数据增强策略。
-* 2021.11
-  * **Matting项目开源**, 实现图像抠图功能。
-  * 支持Matting模型:DIM, MODNet;支持模型导出及Python部署;支持背景替换功能;支持人像抠图Android部署。
-
-## 技术交流
-
-* 如果大家有使用问题和功能建议, 可以通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues)提issue。
-* **欢迎加入PaddleSeg的微信用户群👫**(扫码填写简单问卷即可入群),大家可以和值班同学、各界大佬直接进行交流,还可以**领取30G重磅学习大礼包🎁**
-  * 🔥 获取深度学习视频教程、图像分割论文合集
-  * 🔥 获取PaddleSeg的历次直播视频,最新发版信息和直播动态
-  * 🔥 获取PaddleSeg自建的人像分割数据集,整理的开源数据集
-  * 🔥 获取PaddleSeg在垂类场景的预训练模型和应用合集,涵盖人像分割、交互式分割等等
-  * 🔥 获取PaddleSeg的全流程产业实操范例,包括质检缺陷分割、抠图Matting、道路分割等等
-<div align="center">
-<img src="https://user-images.githubusercontent.com/30883834/213601179-0813a896-11e1-4514-b612-d145e068ba86.jpeg"  width = "200" />  
-</div>
-
-## 模型库
-
-针对高频应用场景 —— 人像抠图,我们训练并开源了**高质量人像抠图模型库**。根据实际应用场景,大家可以直接部署应用,也支持进行微调训练。
-
-模型库中包括我们自研的高精度PP-Matting模型和轻量级PP-MattingV2模型。
-- PP-Matting是PaddleSeg自研的高精度抠图模型,通过引导流设计实现语义引导下高分辨率图像抠图。追求更高精度,推荐使用该模型。
-    且该模型提供了512和1024两个分辨率级别的预训练模型。
-- PP-MattingV2是PaddleSeg自研的轻量级抠图SOTA模型,通过双层金字塔池化及空间注意力提取高级语义信息,并利用多级特征融合机制兼顾语义和细节的预测。
-    对比MODNet模型推理速度提升44.6%, 误差平均相对减小17.91%。追求更高速度,推荐使用该模型。
-
-| 模型 | SAD | MSE | Grad | Conn |Params(M) | FLOPs(G) | FPS | Config File | Checkpoint | Inference Model |
-| - | - | -| - | - | - | - | -| - | - | - |
-| PP-MattingV2-512   |40.59|0.0038|33.86|38.90| 8.95 | 7.51 | 98.89 |[cfg](../configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmattingv2-stdc1-human_512.zip) |
-| PP-Matting-512     |31.56|0.0022|31.80|30.13| 24.5 | 91.28 | 28.9 |[cfg](../configs/ppmatting/ppmatting-hrnet_w18-human_512.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_512.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w18-human_512.zip) |
-| PP-Matting-1024    |66.22|0.0088|32.90|64.80| 24.5 | 91.28 | 13.4(1024X1024) |[cfg](../configs/ppmatting/ppmatting-hrnet_w18-human_1024.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_1024.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w18-human_1024.zip) |
-| PP-HumanMatting    |53.15|0.0054|43.75|52.03| 63.9 | 135.8 (2048X2048)| 32.8(2048X2048)|[cfg](../configs/human_matting/human_matting-resnet34_vd.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/human_matting-resnet34_vd.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/pp-humanmatting-resnet34_vd.zip) |
-| MODNet-MobileNetV2 |50.07|0.0053|35.55|48.37| 6.5 | 15.7 | 68.4 |[cfg](../configs/modnet/modnet-mobilenetv2.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/modnet-mobilenetv2.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/modnet-mobilenetv2.zip) |
-| MODNet-ResNet50_vd |39.01|0.0038|32.29|37.38| 92.2 | 151.6 | 29.0 |[cfg](../configs/modnet/modnet-resnet50_vd.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/modnet-resnet50_vd.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/modnet-resnet50_vd.zip) |
-| MODNet-HRNet_W18   |35.55|0.0035|31.73|34.07| 10.2 | 28.5 | 62.6 |[cfg](../configs/modnet/modnet-hrnet_w18.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/modnet-hrnet_w18.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/modnet-hrnet_w18.zip) |
-| DIM-VGG16          |32.31|0.0233|28.89|31.45| 28.4 | 175.5| 30.4 |[cfg](../configs/dim/dim-vgg16.yml)| [model](https://paddleseg.bj.bcebos.com/matting/models/dim-vgg16.pdparams) | [model inference](https://paddleseg.bj.bcebos.com/matting/models/deploy/dim-vgg16.zip) |
-
-**注意**:
-* 指标计算数据集为PPM-100和AIM-500中的人像部分共同组成,共195张,[PPM-AIM-195](https://paddleseg.bj.bcebos.com/matting/datasets/PPM-AIM-195.zip)。
-* FLOPs和FPS计算默认模型输入大小为(512, 512), GPU为Tesla V100 32G。FPS基于Paddle Inference预测库进行计算。
-* DIM为trimap-based的抠图方法,指标只计算过度区域部分,对于没有提供trimap的情况下,默认将0<alpha<255的区域以25像素为半径进行膨胀腐蚀后作为过度区域。
-
-## 使用教程
-* [在线体验](docs/online_demo_cn.md)
-* [快速体验](docs/quick_start_cn.md)
-* [全流程开发](docs/full_develop_cn.md)
-* [人像抠图Android部署](deploy/human_matting_android_demo/README_CN.md)
-* [人像抠图.NET部署](https://gitee.com/raoyutian/PaddleSegSharp)
-* [数据集准备](docs/data_prepare_cn.md)
-* AI Studio第三方教程
-  * [PaddleSeg的Matting教程](https://aistudio.baidu.com/aistudio/projectdetail/3876411?contributionType=1)
-  * [PP-Matting图像抠图教程](https://aistudio.baidu.com/aistudio/projectdetail/5002963?contributionType=1)
-
-## 社区贡献
-* 感谢[钱彬(Qianbin)](https://github.com/qianbin1989228)等开发者的贡献。
-* 感谢Jizhizi Li等提出的[GFM](https://arxiv.org/abs/2010.16188) Matting框架助力PP-Matting的算法研发。
-
-## 学术引用
-```
-@article{chen2022pp,
-  title={PP-Matting: High-Accuracy Natural Image Matting},
-  author={Chen, Guowei and Liu, Yi and Wang, Jian and Peng, Juncai and Hao, Yuying and Chu, Lutao and Tang, Shiyu and Wu, Zewu and Chen, Zeyu and Yu, Zhiliang and others},
-  journal={arXiv preprint arXiv:2204.09433},
-  year={2022}
-}
-```
-
-## 参考文档
-https://gitee.com/paddlepaddle/PaddleSeg/blob/release/2.8/Matting/docs/quick_start_cn.md

+ 1 - 1
docs/full_develop_cn.md

@@ -104,7 +104,7 @@ python tools/train.py --help
 如果想利用预训练模型进行微调(finetune),可以在配置文件中添加model.pretained字段,内容为预训练模型权重文件的URL地址或本地路径。下面以使用官方提供的PP-MattingV2模型进行微调为例进行说明。
 
 首先进行预训练模型的下载。
-下载[模型库](../README_CN.md/#模型库)中的预训练模型并放置于pretrained_models目录下。
+下载[模型库](../README.md/#模型库)中的预训练模型并放置于pretrained_models目录下。
 ```shell
 mkdir pretrained_models && cd pretrained_models
 wget https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams

+ 1 - 1
docs/quick_start_cn.md

@@ -27,7 +27,7 @@ pip install -r requirements.txt
 ```
 
 ## 下载预训练模型
-下载[模型库](../README_CN.md/#模型库)中的预训练模型并放置于pretrained_models目录下。这边以PP—MattingV2为例。
+下载[模型库](../README.md/#模型库)中的预训练模型并放置于pretrained_models目录下。这边以PP—MattingV2为例。
 ```shell
 mkdir pretrained_models && cd pretrained_models
 wget https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams