# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py # Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%) # Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm) # So do not report results calculated by these functions in your paper. # Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`. import cv2 import numpy as np from scipy.ndimage.filters import convolve from scipy.special import gamma from skimage.measure import label class MSE: """ Only calculate the unknown region if trimap provided. """ def __init__(self): self.mse_diffs = 0 self.count = 0 def update(self, pred, gt, trimap=None): """ update metric. Args: pred (np.ndarray): The value range is [0., 255.]. gt (np.ndarray): The value range is [0, 255]. trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None. """ if trimap is None: trimap = np.ones_like(gt) * 128 if not (pred.shape == gt.shape == trimap.shape): raise ValueError( 'The shape of `pred`, `gt` and `trimap` should be equal. ' 'but they are {}, {} and {}'.format(pred.shape, gt.shape, trimap.shape)) pred[trimap == 0] = 0 pred[trimap == 255] = 255 mask = trimap == 128 pixels = float(mask.sum()) pred = pred / 255. gt = gt / 255. diff = (pred - gt) * mask mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0 self.mse_diffs += mse_diff self.count += 1 return mse_diff def evaluate(self): mse = self.mse_diffs / self.count if self.count > 0 else 0 return mse class SAD: """ Only calculate the unknown region if trimap provided. """ def __init__(self): self.sad_diffs = 0 self.count = 0 def update(self, pred, gt, trimap=None): """ update metric. Args: pred (np.ndarray): The value range is [0., 255.]. gt (np.ndarray): The value range is [0., 255.]. trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. """ if trimap is None: trimap = np.ones_like(gt) * 128 if not (pred.shape == gt.shape == trimap.shape): raise ValueError( 'The shape of `pred`, `gt` and `trimap` should be equal. ' 'but they are {}, {} and {}'.format(pred.shape, gt.shape, trimap.shape)) pred[trimap == 0] = 0 pred[trimap == 255] = 255 mask = trimap == 128 pred = pred / 255. gt = gt / 255. diff = (pred - gt) * mask sad_diff = (np.abs(diff)).sum() sad_diff /= 1000 self.sad_diffs += sad_diff self.count += 1 return sad_diff def evaluate(self): sad = self.sad_diffs / self.count if self.count > 0 else 0 return sad class Grad: """ Only calculate the unknown region if trimap provided. Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py """ def __init__(self): self.grad_diffs = 0 self.count = 0 def gaussian(self, x, sigma): return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi)) def dgaussian(self, x, sigma): return -x * self.gaussian(x, sigma) / sigma**2 def gauss_filter(self, sigma, epsilon=1e-2): half_size = np.ceil( sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))) size = int(2 * half_size + 1) # create filter in x axis filter_x = np.zeros((size, size)) for i in range(size): for j in range(size): filter_x[i, j] = self.gaussian( i - half_size, sigma) * self.dgaussian(j - half_size, sigma) # normalize filter norm = np.sqrt((filter_x**2).sum()) filter_x = filter_x / norm filter_y = np.transpose(filter_x) return filter_x, filter_y def gauss_gradient(self, img, sigma): filter_x, filter_y = self.gauss_filter(sigma) img_filtered_x = cv2.filter2D( img, -1, filter_x, borderType=cv2.BORDER_REPLICATE) img_filtered_y = cv2.filter2D( img, -1, filter_y, borderType=cv2.BORDER_REPLICATE) return np.sqrt(img_filtered_x**2 + img_filtered_y**2) def update(self, pred, gt, trimap=None, sigma=1.4): """ update metric. Args: pred (np.ndarray): The value range is [0., 1.]. gt (np.ndarray): The value range is [0, 255]. trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4. """ if trimap is None: trimap = np.ones_like(gt) * 128 if not (pred.shape == gt.shape == trimap.shape): raise ValueError( 'The shape of `pred`, `gt` and `trimap` should be equal. ' 'but they are {}, {} and {}'.format(pred.shape, gt.shape, trimap.shape)) pred[trimap == 0] = 0 pred[trimap == 255] = 255 gt = gt.squeeze() pred = pred.squeeze() gt = gt.astype(np.float64) pred = pred.astype(np.float64) gt_normed = np.zeros_like(gt) pred_normed = np.zeros_like(pred) cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX) cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX) gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32) pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32) grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum() grad_diff /= 1000 self.grad_diffs += grad_diff self.count += 1 return grad_diff def evaluate(self): grad = self.grad_diffs / self.count if self.count > 0 else 0 return grad class Conn: """ Only calculate the unknown region if trimap provided. Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py """ def __init__(self): self.conn_diffs = 0 self.count = 0 def update(self, pred, gt, trimap=None, step=0.1): """ update metric. Args: pred (np.ndarray): The value range is [0., 1.]. gt (np.ndarray): The value range is [0, 255]. trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. step (float, optional): Step of threshold when computing intersection between `gt` and `pred`. Default: 0.1. """ if trimap is None: trimap = np.ones_like(gt) * 128 if not (pred.shape == gt.shape == trimap.shape): raise ValueError( 'The shape of `pred`, `gt` and `trimap` should be equal. ' 'but they are {}, {} and {}'.format(pred.shape, gt.shape, trimap.shape)) pred[trimap == 0] = 0 pred[trimap == 255] = 255 gt = gt.squeeze() pred = pred.squeeze() gt = gt.astype(np.float32) / 255 pred = pred.astype(np.float32) / 255 thresh_steps = np.arange(0, 1 + step, step) round_down_map = -np.ones_like(gt) for i in range(1, len(thresh_steps)): gt_thresh = gt >= thresh_steps[i] pred_thresh = pred >= thresh_steps[i] intersection = (gt_thresh & pred_thresh).astype(np.uint8) # connected components _, output, stats, _ = cv2.connectedComponentsWithStats( intersection, connectivity=4) # start from 1 in dim 0 to exclude background size = stats[1:, -1] # largest connected component of the intersection omega = np.zeros_like(gt) if len(size) != 0: max_id = np.argmax(size) # plus one to include background omega[output == max_id + 1] = 1 mask = (round_down_map == -1) & (omega == 0) round_down_map[mask] = thresh_steps[i - 1] round_down_map[round_down_map == -1] = 1 gt_diff = gt - round_down_map pred_diff = pred - round_down_map # only calculate difference larger than or equal to 0.15 gt_phi = 1 - gt_diff * (gt_diff >= 0.15) pred_phi = 1 - pred_diff * (pred_diff >= 0.15) conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128)) conn_diff /= 1000 self.conn_diffs += conn_diff self.count += 1 return conn_diff def evaluate(self): conn = self.conn_diffs / self.count if self.count > 0 else 0 return conn