# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import paddle import paddleseg from paddleseg.cvlibs import manager from paddleseg.utils import get_sys_env, logger import ppmatting from ppmatting.core import predict, load from ppmatting.utils import get_image_list, Config, MatBuilder current_path = os.path.abspath(os.path.dirname(__file__)) def parse_args(): parser = argparse.ArgumentParser(description='Model training') parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str) parser.add_argument( '--model_path', dest='model_path', help='The path of model for prediction', type=str, default=None) parser.add_argument( '--image_path', dest='image_path', help='The path of image, it can be a file or a directory including images', type=str, default=None) parser.add_argument( '--trimap_path', dest='trimap_path', help='The path of trimap, it can be a file or a directory including images. ' 'The image should be the same as image when it is a directory.', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the model snapshot', type=str, default='./output/results') parser.add_argument( '--fg_estimate', default=True, type=eval, choices=[True, False], help='Whether to estimate foreground when predicting.') parser.add_argument( '--device', dest='device', help='Set the device type, which may be GPU, CPU or XPU.', default='gpu', type=str) return parser.parse_args() def main(args): assert args.cfg is not None, \ 'No configuration file specified, please set --config' cfg = Config(args.cfg) builder = MatBuilder(cfg) paddleseg.utils.show_env_info() paddleseg.utils.show_cfg_info(cfg) paddleseg.utils.set_device(args.device) model = builder.model transforms = ppmatting.transforms.Compose(builder.val_transforms) image_list, image_dir = get_image_list(args.image_path) if args.trimap_path is None: trimap_list = None else: trimap_list, _ = get_image_list(args.trimap_path) logger.info('Number of predict images = {}'.format(len(image_list))) predict( model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, trimap_list=trimap_list, save_dir=args.save_dir, fg_estimate=args.fg_estimate) def get_rel_path(path: str): return "{}/../{}".format(current_path, path) global model, transforms def load_model(): cfg = Config(get_rel_path("configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml")) builder = MatBuilder(cfg) paddleseg.utils.show_env_info() paddleseg.utils.show_cfg_info(cfg) paddleseg.utils.set_device("cpu") global model, transforms model = builder.model model_path = get_rel_path("models/ppmattingv2-stdc1-human_512.pdparams") paddleseg.utils.show_env_info() paddleseg.utils.show_cfg_info(cfg) paddleseg.utils.set_device("cpu") transforms = ppmatting.transforms.Compose(builder.val_transforms) load(model, model_path) def seg(img_path: str, save_dir: str): # cfg = Config(get_rel_path("configs/quick_start/ppmattingv2-stdc1-human_512.yml")) # builder = MatBuilder(cfg) # paddleseg.utils.show_env_info() # paddleseg.utils.show_cfg_info(cfg) # paddleseg.utils.set_device("cpu") # model = builder.model # transforms = ppmatting.transforms.Compose(builder.val_transforms) image_list, image_dir = get_image_list(img_path) logger.info('Number of predict images = {}'.format(len(image_list))) model_path = get_rel_path("models/ppmatting-hrnet_w18-human_512.pdparams") predict( model, model_path=model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, trimap_list=None, save_dir=save_dir, fg_estimate=True) if __name__ == '__main__': args = parse_args() main(args)