# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import numpy as np import time import paddle import paddle.nn.functional as F from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar from ppmatting.metrics import metrics_class_dict np.set_printoptions(suppress=True) def save_alpha_pred(alpha, path): """ The value of alpha is range [0, 1], shape should be [h,w] """ dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) alpha = (alpha).astype('uint8') cv2.imwrite(path, alpha) def reverse_transform(alpha, trans_info): """recover pred to origin shape""" for item in trans_info[::-1]: if item[0][0] == 'resize': h, w = item[1][0], item[1][1] alpha = F.interpolate(alpha, [h, w], mode='bilinear') elif item[0][0] == 'padding': h, w = item[1][0], item[1][1] alpha = alpha[:, :, 0:h, 0:w] else: raise Exception("Unexpected info '{}' in im_info".format(item[0])) return alpha def evaluate(model, eval_dataset, num_workers=0, print_detail=True, save_dir='output/results', save_results=True, metrics='sad', precision='fp32', amp_level='O1'): model.eval() nranks = paddle.distributed.ParallelEnv().nranks local_rank = paddle.distributed.ParallelEnv().local_rank if nranks > 1: # Initialize parallel environment if not done. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( ): paddle.distributed.init_parallel_env() loader = paddle.io.DataLoader( eval_dataset, batch_size=1, drop_last=False, num_workers=num_workers, return_list=True, ) total_iters = len(loader) # Get metric instances and data saving metrics_ins = {} metrics_data = {} if isinstance(metrics, str): metrics = [metrics] elif not isinstance(metrics, list): metrics = ['sad'] for key in metrics: key = key.lower() metrics_ins[key] = metrics_class_dict[key]() metrics_data[key] = None if print_detail: logger.info("Start evaluating (total_samples: {}, total_iters: {})...". format(len(eval_dataset), total_iters)) progbar_val = progbar.Progbar( target=total_iters, verbose=1 if nranks < 2 else 2) reader_cost_averager = TimeAverager() batch_cost_averager = TimeAverager() batch_start = time.time() img_name = '' i = 0 with paddle.no_grad(): for iter, data in enumerate(loader): reader_cost_averager.record(time.time() - batch_start) if precision == 'fp16': with paddle.amp.auto_cast( level=amp_level, enable=True, custom_white_list={ "elementwise_add", "batch_norm", "sync_batch_norm" }, custom_black_list={'bilinear_interp_v2', 'pad3d'}): alpha_pred = model(data) alpha_pred = reverse_transform(alpha_pred, data['trans_info']) else: alpha_pred = model(data) alpha_pred = reverse_transform(alpha_pred, data['trans_info']) alpha_pred = alpha_pred.numpy() alpha_gt = data['alpha'].numpy() * 255 trimap = data.get('ori_trimap') if trimap is not None: trimap = trimap.numpy().astype('uint8') alpha_pred = np.round(alpha_pred * 255) for key in metrics_ins.keys(): metrics_data[key] = metrics_ins[key].update(alpha_pred, alpha_gt, trimap) if save_results: alpha_pred_one = alpha_pred[0].squeeze() if trimap is not None: trimap = trimap.squeeze().astype('uint8') alpha_pred_one[trimap == 255] = 255 alpha_pred_one[trimap == 0] = 0 save_name = data['img_name'][0] name, ext = os.path.splitext(save_name) if save_name == img_name: save_name = name + '_' + str(i) + ext i += 1 else: img_name = save_name save_name = name + '_' + str(i) + ext i = 1 save_alpha_pred(alpha_pred_one, os.path.join(save_dir, save_name)) batch_cost_averager.record( time.time() - batch_start, num_samples=len(alpha_gt)) batch_cost = batch_cost_averager.get_average() reader_cost = reader_cost_averager.get_average() if local_rank == 0 and print_detail: show_list = [(k, v) for k, v in metrics_data.items()] show_list = show_list + [('batch_cost', batch_cost), ('reader cost', reader_cost)] progbar_val.update(iter + 1, show_list) reader_cost_averager.reset() batch_cost_averager.reset() batch_start = time.time() for key in metrics_ins.keys(): metrics_data[key] = metrics_ins[key].evaluate() log_str = '[EVAL] ' for key, value in metrics_data.items(): log_str = log_str + key + ': {:.4f}, '.format(value) log_str = log_str[:-2] logger.info(log_str) return metrics_data