# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle from urllib.parse import urlparse from paddleseg.utils import logger, download_pretrained_model def get_files(root_path): res = [] for root, dirs, files in os.walk(root_path, followlinks=True): for f in files: if f.endswith(('.jpg', '.png', '.jpeg', 'JPG')): res.append(os.path.join(root, f)) return res def get_image_list(image_path): """Get image list""" valid_suffix = [ '.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png' ] image_list = [] image_dir = None if os.path.isfile(image_path): image_dir = None if os.path.splitext(image_path)[-1] in valid_suffix: image_list.append(image_path) else: image_dir = os.path.dirname(image_path) with open(image_path, 'r') as f: for line in f: line = line.strip() if len(line.split()) > 1: raise RuntimeError( 'There should be only one image path per line in `image_path` file. Wrong line: {}' .format(line)) image_list.append(os.path.join(image_dir, line)) elif os.path.isdir(image_path): image_dir = image_path for root, dirs, files in os.walk(image_path): for f in files: if '.ipynb_checkpoints' in root: continue if os.path.splitext(f)[-1] in valid_suffix: image_list.append(os.path.join(root, f)) image_list.sort() else: raise FileNotFoundError( '`image_path` is not found. it should be an image file or a directory including images' ) if len(image_list) == 0: raise RuntimeError('There are not image file in `image_path`') return image_list, image_dir def mkdir(path): sub_dir = os.path.dirname(path) if not os.path.exists(sub_dir): os.makedirs(sub_dir) def load_pretrained_model(model, pretrained_model): if pretrained_model is not None: logger.info('Loading pretrained model from {}'.format(pretrained_model)) if urlparse(pretrained_model).netloc: pretrained_model = download_pretrained_model(pretrained_model) if os.path.exists(pretrained_model): para_state_dict = paddle.load(pretrained_model) model_state_dict = model.state_dict() keys = model_state_dict.keys() num_params_loaded = 0 for k in keys: if k not in para_state_dict: logger.warning("{} is not in pretrained model".format(k)) elif list(para_state_dict[k].shape) != list(model_state_dict[k] .shape): # When the input is more than 3 channels such as trimap-based method, padding zeros to load. para_shape = list(para_state_dict[k].shape) model_shape = list(model_state_dict[k].shape) if 'weight' in k \ and len(para_shape) > 3 \ and len(para_shape) > 3 \ and para_shape[1] < model_shape[1] \ and para_shape[0] == model_shape[0] \ and para_shape[2] == model_shape[2] \ and para_shape[3] == model_shape[3]: zeros_pad = paddle.zeros( (para_shape[0], model_shape[1] - para_shape[1], para_shape[2], para_shape[3])) para_state_dict[k] = paddle.concat( [para_state_dict[k], zeros_pad], axis=1) model_state_dict[k] = para_state_dict[k] num_params_loaded += 1 else: logger.warning( "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})" .format(k, para_state_dict[k].shape, model_state_dict[k].shape)) else: model_state_dict[k] = para_state_dict[k] num_params_loaded += 1 model.set_dict(model_state_dict) logger.info("There are {}/{} variables loaded into {}.".format( num_params_loaded, len(model_state_dict), model.__class__.__name__)) else: raise ValueError('The pretrained model directory is not Found: {}'. format(pretrained_model)) else: logger.info( 'No pretrained model to load, {} will be trained from scratch.'. format(model.__class__.__name__))