ppmattingv2-stdc1-human_512.yml 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. batch_size: 16 # total batch size: 16
  2. iters: 100000
  3. train_dataset:
  4. type: MattingDataset
  5. dataset_root: data/PPM-100
  6. train_file: train.txt
  7. transforms:
  8. - type: LoadImages
  9. - type: LimitShort
  10. max_short: 512
  11. - type: RandomCrop
  12. crop_size: [512, 512]
  13. - type: Padding
  14. target_size: [512, 512]
  15. - type: RandomDistort
  16. - type: RandomBlur
  17. prob: 0.1
  18. - type: RandomSharpen
  19. prob: 0.2
  20. - type: RandomNoise
  21. prob: 0.5
  22. - type: RandomReJpeg
  23. prob: 0.2
  24. - type: RandomHorizontalFlip
  25. - type: Normalize
  26. mode: train
  27. val_dataset:
  28. type: MattingDataset
  29. dataset_root: data/PPM-100
  30. val_file: val.txt
  31. transforms:
  32. - type: LoadImages
  33. - type: LimitShort
  34. max_short: 512
  35. - type: ResizeToIntMult
  36. mult_int: 32
  37. - type: Normalize
  38. mode: val
  39. get_trimap: False
  40. model:
  41. type: PPMattingV2
  42. backbone:
  43. type: STDC1
  44. pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
  45. decoder_channels: [128, 96, 64, 32, 16]
  46. head_channel: 8
  47. dpp_output_channel: 256
  48. dpp_merge_type: add
  49. optimizer:
  50. type: sgd
  51. momentum: 0.9
  52. weight_decay: 5.0e-4
  53. lr_scheduler:
  54. type: PolynomialDecay
  55. learning_rate: 0.01
  56. end_lr: 0
  57. power: 0.9
  58. warmup_iters: 1000
  59. warmup_start_lr: 1.0e-5