123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddleseg.cvlibs import manager
- from paddleseg.models import layers
- import ppmatting
- __all__ = [
- "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
- ]
- class ConvBNLayer(nn.Layer):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- dilation=1,
- groups=1,
- is_vd_mode=False,
- act=None, ):
- super(ConvBNLayer, self).__init__()
- self.is_vd_mode = is_vd_mode
- self._pool2d_avg = nn.AvgPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self._conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
- dilation=dilation,
- groups=groups,
- bias_attr=False)
- self._batch_norm = layers.SyncBatchNorm(out_channels)
- self._act_op = layers.Activation(act=act)
- def forward(self, inputs):
- if self.is_vd_mode:
- inputs = self._pool2d_avg(inputs)
- y = self._conv(inputs)
- y = self._batch_norm(y)
- y = self._act_op(y)
- return y
- class BottleneckBlock(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- stride,
- shortcut=True,
- if_first=False,
- dilation=1):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- act='relu')
- self.dilation = dilation
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=stride,
- act='relu',
- dilation=dilation)
- self.conv2 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels * 4,
- kernel_size=1,
- act=None)
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels * 4,
- kernel_size=1,
- stride=1,
- is_vd_mode=False if if_first or stride == 1 else True)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- ####################################################################
- # If given dilation rate > 1, using corresponding padding.
- # The performance drops down without the follow padding.
- if self.dilation > 1:
- padding = self.dilation
- y = F.pad(y, [padding, padding, padding, padding])
- #####################################################################
- conv1 = self.conv1(y)
- conv2 = self.conv2(conv1)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv2)
- y = F.relu(y)
- return y
- class BasicBlock(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- stride,
- shortcut=True,
- if_first=False):
- super(BasicBlock, self).__init__()
- self.stride = stride
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=stride,
- act='relu')
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- act=None)
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- is_vd_mode=False if if_first or stride == 1 else True)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv1)
- y = F.relu(y)
- return y
- class ResNet_vd(nn.Layer):
- """
- The ResNet_vd implementation based on PaddlePaddle.
- The original article refers to Jingdong
- Tong He, et, al. "Bag of Tricks for Image Classification with Convolutional Neural Networks"
- (https://arxiv.org/pdf/1812.01187.pdf).
- Args:
- layers (int, optional): The layers of ResNet_vd. The supported layers are (18, 34, 50, 101, 152, 200). Default: 50.
- output_stride (int, optional): The stride of output features compared to input images. It is 8 or 16. Default: 8.
- multi_grid (tuple|list, optional): The grid of stage4. Defult: (1, 1, 1).
- pretrained (str, optional): The path of pretrained model.
- """
- def __init__(self,
- input_channels=3,
- layers=50,
- output_stride=32,
- multi_grid=(1, 1, 1),
- pretrained=None):
- super(ResNet_vd, self).__init__()
- self.conv1_logit = None # for gscnn shape stream
- self.layers = layers
- supported_layers = [18, 34, 50, 101, 152, 200]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- if layers == 18:
- depth = [2, 2, 2, 2]
- elif layers == 34 or layers == 50:
- depth = [3, 4, 6, 3]
- elif layers == 101:
- depth = [3, 4, 23, 3]
- elif layers == 152:
- depth = [3, 8, 36, 3]
- elif layers == 200:
- depth = [3, 12, 48, 3]
- num_channels = [64, 256, 512,
- 1024] if layers >= 50 else [64, 64, 128, 256]
- num_filters = [64, 128, 256, 512]
- # for channels of four returned stages
- self.feat_channels = [c * 4 for c in num_filters
- ] if layers >= 50 else num_filters
- self.feat_channels = [64] + self.feat_channels
- dilation_dict = None
- if output_stride == 8:
- dilation_dict = {2: 2, 3: 4}
- elif output_stride == 16:
- dilation_dict = {3: 2}
- self.conv1_1 = ConvBNLayer(
- in_channels=input_channels,
- out_channels=32,
- kernel_size=3,
- stride=2,
- act='relu')
- self.conv1_2 = ConvBNLayer(
- in_channels=32,
- out_channels=32,
- kernel_size=3,
- stride=1,
- act='relu')
- self.conv1_3 = ConvBNLayer(
- in_channels=32,
- out_channels=64,
- kernel_size=3,
- stride=1,
- act='relu')
- self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
- # self.block_list = []
- self.stage_list = []
- if layers >= 50:
- for block in range(len(depth)):
- shortcut = False
- block_list = []
- for i in range(depth[block]):
- if layers in [101, 152] and block == 2:
- if i == 0:
- conv_name = "res" + str(block + 2) + "a"
- else:
- conv_name = "res" + str(block + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block + 2) + chr(97 + i)
- ###############################################################################
- # Add dilation rate for some segmentation tasks, if dilation_dict is not None.
- dilation_rate = dilation_dict[
- block] if dilation_dict and block in dilation_dict else 1
- # Actually block here is 'stage', and i is 'block' in 'stage'
- # At the stage 4, expand the the dilation_rate if given multi_grid
- if block == 3:
- dilation_rate = dilation_rate * multi_grid[i]
- ###############################################################################
- bottleneck_block = self.add_sublayer(
- 'bb_%d_%d' % (block, i),
- BottleneckBlock(
- in_channels=num_channels[block]
- if i == 0 else num_filters[block] * 4,
- out_channels=num_filters[block],
- stride=2 if i == 0 and block != 0 and
- dilation_rate == 1 else 1,
- shortcut=shortcut,
- if_first=block == i == 0,
- dilation=dilation_rate))
- block_list.append(bottleneck_block)
- shortcut = True
- self.stage_list.append(block_list)
- else:
- for block in range(len(depth)):
- shortcut = False
- block_list = []
- for i in range(depth[block]):
- conv_name = "res" + str(block + 2) + chr(97 + i)
- basic_block = self.add_sublayer(
- 'bb_%d_%d' % (block, i),
- BasicBlock(
- in_channels=num_channels[block]
- if i == 0 else num_filters[block],
- out_channels=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut,
- if_first=block == i == 0))
- block_list.append(basic_block)
- shortcut = True
- self.stage_list.append(block_list)
- self.pretrained = pretrained
- self.init_weight()
- def forward(self, inputs):
- feat_list = []
- y = self.conv1_1(inputs)
- y = self.conv1_2(y)
- y = self.conv1_3(y)
- feat_list.append(y)
- y = self.pool2d_max(y)
- # A feature list saves the output feature map of each stage.
- for stage in self.stage_list:
- for block in stage:
- y = block(y)
- feat_list.append(y)
- return feat_list
- def init_weight(self):
- ppmatting.utils.load_pretrained_model(self, self.pretrained)
- @manager.BACKBONES.add_component
- def ResNet18_vd(**args):
- model = ResNet_vd(layers=18, **args)
- return model
- @manager.BACKBONES.add_component
- def ResNet34_vd(**args):
- model = ResNet_vd(layers=34, **args)
- return model
- @manager.BACKBONES.add_component
- def ResNet50_vd(**args):
- model = ResNet_vd(layers=50, **args)
- return model
- @manager.BACKBONES.add_component
- def ResNet101_vd(**args):
- model = ResNet_vd(layers=101, **args)
- return model
- def ResNet152_vd(**args):
- model = ResNet_vd(layers=152, **args)
- return model
- def ResNet200_vd(**args):
- model = ResNet_vd(layers=200, **args)
- return model
|