123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
- # and https://github.com/open-mmlab/mmediting
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddleseg.models import layers
- from paddleseg import utils
- from paddleseg.cvlibs import manager, param_init
- from ppmatting.models.layers import GuidedCxtAtten
- @manager.MODELS.add_component
- class GCABaseline(nn.Layer):
- def __init__(self, backbone, pretrained=None):
- super().__init__()
- self.encoder = backbone
- self.decoder = ResShortCut_D_Dec([2, 3, 3, 2])
- def forward(self, inputs):
- x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1)
- embedding, mid_fea = self.encoder(x)
- alpha_pred = self.decoder(embedding, mid_fea)
- if self.training:
- logit_dict = {'alpha_pred': alpha_pred, }
- loss_dict = {}
- alpha_gt = inputs['alpha']
- loss_dict["alpha"] = F.l1_loss(alpha_pred, alpha_gt)
- loss_dict["all"] = loss_dict["alpha"]
- return logit_dict, loss_dict
- return alpha_pred
- @manager.MODELS.add_component
- class GCA(GCABaseline):
- def __init__(self, backbone, pretrained=None):
- super().__init__(backbone, pretrained)
- self.decoder = ResGuidedCxtAtten_Dec([2, 3, 3, 2])
- def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """5x5 convolution with padding"""
- return nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=5,
- stride=stride,
- padding=2,
- groups=groups,
- bias_attr=False,
- dilation=dilation)
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias_attr=False,
- dilation=dilation)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2D(
- in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
- class BasicBlock(nn.Layer):
- expansion = 1
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- upsample=None,
- norm_layer=None,
- large_kernel=False):
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm
- self.stride = stride
- conv = conv5x5 if large_kernel else conv3x3
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- if self.stride > 1:
- self.conv1 = nn.utils.spectral_norm(
- nn.Conv2DTranspose(
- inplanes,
- inplanes,
- kernel_size=4,
- stride=2,
- padding=1,
- bias_attr=False))
- else:
- self.conv1 = nn.utils.spectral_norm(conv(inplanes, inplanes))
- self.bn1 = norm_layer(inplanes)
- self.activation = nn.LeakyReLU(0.2)
- self.conv2 = nn.utils.spectral_norm(conv(inplanes, planes))
- self.bn2 = norm_layer(planes)
- self.upsample = upsample
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.activation(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.upsample is not None:
- identity = self.upsample(x)
- out += identity
- out = self.activation(out)
- return out
- class ResNet_D_Dec(nn.Layer):
- def __init__(self,
- layers=[3, 4, 4, 2],
- norm_layer=None,
- large_kernel=False,
- late_downsample=False):
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm
- self._norm_layer = norm_layer
- self.large_kernel = large_kernel
- self.kernel_size = 5 if self.large_kernel else 3
- self.inplanes = 512 if layers[0] > 0 else 256
- self.late_downsample = late_downsample
- self.midplanes = 64 if late_downsample else 32
- self.conv1 = nn.utils.spectral_norm(
- nn.Conv2DTranspose(
- self.midplanes,
- 32,
- kernel_size=4,
- stride=2,
- padding=1,
- bias_attr=False))
- self.bn1 = norm_layer(32)
- self.leaky_relu = nn.LeakyReLU(0.2)
- self.conv2 = nn.Conv2D(
- 32,
- 1,
- kernel_size=self.kernel_size,
- stride=1,
- padding=self.kernel_size // 2)
- self.upsample = nn.UpsamplingNearest2D(scale_factor=2)
- self.tanh = nn.Tanh()
- self.layer1 = self._make_layer(BasicBlock, 256, layers[0], stride=2)
- self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(BasicBlock, 64, layers[2], stride=2)
- self.layer4 = self._make_layer(
- BasicBlock, self.midplanes, layers[3], stride=2)
- self.init_weight()
- def _make_layer(self, block, planes, blocks, stride=1):
- if blocks == 0:
- return nn.Sequential(nn.Identity())
- norm_layer = self._norm_layer
- upsample = None
- if stride != 1:
- upsample = nn.Sequential(
- nn.UpsamplingNearest2D(scale_factor=2),
- nn.utils.spectral_norm(
- conv1x1(self.inplanes, planes * block.expansion)),
- norm_layer(planes * block.expansion), )
- elif self.inplanes != planes * block.expansion:
- upsample = nn.Sequential(
- nn.utils.spectral_norm(
- conv1x1(self.inplanes, planes * block.expansion)),
- norm_layer(planes * block.expansion), )
- layers = [
- block(self.inplanes, planes, stride, upsample, norm_layer,
- self.large_kernel)
- ]
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(
- block(
- self.inplanes,
- planes,
- norm_layer=norm_layer,
- large_kernel=self.large_kernel))
- return nn.Sequential(*layers)
- def forward(self, x, mid_fea):
- x = self.layer1(x) # N x 256 x 32 x 32
- print(x.shape)
- x = self.layer2(x) # N x 128 x 64 x 64
- print(x.shape)
- x = self.layer3(x) # N x 64 x 128 x 128
- print(x.shape)
- x = self.layer4(x) # N x 32 x 256 x 256
- print(x.shape)
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.leaky_relu(x)
- x = self.conv2(x)
- alpha = (self.tanh(x) + 1.0) / 2.0
- return alpha
- def init_weight(self):
- for layer in self.sublayers():
- if isinstance(layer, nn.Conv2D):
- if hasattr(layer, "weight_orig"):
- param = layer.weight_orig
- else:
- param = layer.weight
- param_init.xavier_uniform(param)
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
- param_init.constant_init(layer.weight, value=1.0)
- param_init.constant_init(layer.bias, value=0.0)
- elif isinstance(layer, BasicBlock):
- param_init.constant_init(layer.bn2.weight, value=0.0)
- class ResShortCut_D_Dec(ResNet_D_Dec):
- def __init__(self,
- layers,
- norm_layer=None,
- large_kernel=False,
- late_downsample=False):
- super().__init__(
- layers, norm_layer, large_kernel, late_downsample=late_downsample)
- def forward(self, x, mid_fea):
- fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut']
- x = self.layer1(x) + fea5
- x = self.layer2(x) + fea4
- x = self.layer3(x) + fea3
- x = self.layer4(x) + fea2
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.leaky_relu(x) + fea1
- x = self.conv2(x)
- alpha = (self.tanh(x) + 1.0) / 2.0
- return alpha
- class ResGuidedCxtAtten_Dec(ResNet_D_Dec):
- def __init__(self,
- layers,
- norm_layer=None,
- large_kernel=False,
- late_downsample=False):
- super().__init__(
- layers, norm_layer, large_kernel, late_downsample=late_downsample)
- self.gca = GuidedCxtAtten(128, 128)
- def forward(self, x, mid_fea):
- fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut']
- im = mid_fea['image_fea']
- x = self.layer1(x) + fea5 # N x 256 x 32 x 32
- x = self.layer2(x) + fea4 # N x 128 x 64 x 64
- x = self.gca(im, x, mid_fea['unknown']) # contextual attention
- x = self.layer3(x) + fea3 # N x 64 x 128 x 128
- x = self.layer4(x) + fea2 # N x 32 x 256 x 256
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.leaky_relu(x) + fea1
- x = self.conv2(x)
- alpha = (self.tanh(x) + 1.0) / 2.0
- return alpha
|