123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import os
- import sys
- import cv2
- import numpy as np
- import paddle
- import paddleseg
- from paddleseg.cvlibs import manager
- from paddleseg.utils import get_sys_env, logger
- LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(os.path.join(LOCAL_PATH, '..'))
- manager.BACKBONES._components_dict.clear()
- manager.TRANSFORMS._components_dict.clear()
- import ppmatting
- from ppmatting.core import predict
- from ppmatting.utils import get_image_list, estimate_foreground_ml, Config, MatBuilder
- def parse_args():
- parser = argparse.ArgumentParser(
- description='PP-HumanSeg inference for video')
- parser.add_argument(
- "--config",
- dest="cfg",
- help="The config file.",
- default=None,
- type=str,
- required=True)
- parser.add_argument(
- '--model_path',
- dest='model_path',
- help='The path of model for prediction',
- type=str,
- default=None)
- parser.add_argument(
- '--image_path',
- dest='image_path',
- help='Image including human',
- type=str,
- default=None)
- parser.add_argument(
- '--trimap_path',
- dest='trimap_path',
- help='The path of trimap',
- type=str,
- default=None)
- parser.add_argument(
- '--background',
- dest='background',
- help='Background for replacing. It is a string which specifies the background color (r,g,b,w) or a path to background image. If not specified, a green background is used.',
- type=str,
- default=None)
- parser.add_argument(
- '--save_dir',
- dest='save_dir',
- help='The directory for saving the inference results',
- type=str,
- default='./output')
- parser.add_argument(
- '--fg_estimate',
- default=True,
- type=eval,
- choices=[True, False],
- help='Whether to estimate foreground when predicting.')
- parser.add_argument(
- '--device',
- dest='device',
- help='Set the device type, which may be GPU, CPU or XPU.',
- default='gpu',
- type=str)
- return parser.parse_args()
- def main(args):
- assert args.cfg is not None, \
- 'No configuration file specified, please set --config'
- cfg = Config(args.cfg)
- builder = MatBuilder(cfg)
- paddleseg.utils.show_env_info()
- paddleseg.utils.show_cfg_info(cfg)
- paddleseg.utils.set_device(args.device)
- model = builder.model
- transforms = ppmatting.transforms.Compose(builder.val_transforms)
- alpha, fg = predict(
- model,
- model_path=args.model_path,
- transforms=transforms,
- image_list=[args.image_path],
- trimap_list=[args.trimap_path],
- save_dir=args.save_dir,
- fg_estimate=args.fg_estimate)
- img_ori = cv2.imread(args.image_path)
- bg = get_bg(args.background, img_ori.shape)
- alpha = alpha / 255.0
- alpha = alpha[:, :, np.newaxis]
- com = alpha * fg + (1 - alpha) * bg
- com = com.astype('uint8')
- com_save_path = os.path.join(args.save_dir,
- os.path.basename(args.image_path))
- cv2.imwrite(com_save_path, com)
- def get_bg(background, img_shape):
- bg = np.zeros(img_shape)
- if background == 'r':
- bg[:, :, 2] = 255
- elif background is None or background == 'g':
- bg[:, :, 1] = 255
- elif background == 'b':
- bg[:, :, 0] = 255
- elif background == 'w':
- bg[:, :, :] = 255
- elif not os.path.exists(background):
- raise Exception('The --background is not existed: {}'.format(
- background))
- else:
- bg = cv2.imread(background)
- bg = cv2.resize(bg, (img_shape[1], img_shape[0]))
- return bg
- if __name__ == "__main__":
- args = parse_args()
- main(args)
|