Без опису

tuon 146478f00b feat: 增加一次性任务 10 місяців тому
api d811edb830 feat: 接口优化,感觉有点乱,不统一 11 місяців тому
bin 146478f00b feat: 增加一次性任务 10 місяців тому
configs 8eca0cc935 feat: 模型可配置 11 місяців тому
demo d284f3ea1f init 11 місяців тому
deploy d284f3ea1f init 11 місяців тому
docs 3e870b9762 feat: 增加两个模型下载 11 місяців тому
ppmatting b9947d019f 抠图接口增加返回路径 11 місяців тому
tests d284f3ea1f init 11 місяців тому
tools 8eca0cc935 feat: 模型可配置 11 місяців тому
utils d811edb830 feat: 接口优化,感觉有点乱,不统一 11 місяців тому
.gitignore 31b3013ced fix: 忽略模型 11 місяців тому
Dockerfile 146478f00b feat: 增加一次性任务 10 місяців тому
Makefile 146478f00b feat: 增加一次性任务 10 місяців тому
README.md 68c6512e6b feat: 增加两个模型下载 11 місяців тому
_log.py 146478f00b feat: 增加一次性任务 10 місяців тому
app.py 004b1669d8 启动参数 11 місяців тому
build.sh fc19037f54 feat: 添加docker打包脚本 11 місяців тому
docker-compose.yaml 5c854a8d6f feat: 模型可配置 11 місяців тому
install.sh 590a61ecbb 更换模型,这个效果不错 11 місяців тому
main.py ea9fc3f11f s 11 місяців тому
requirements.txt 146478f00b feat: 增加一次性任务 10 місяців тому
runtest.sh d284f3ea1f init 11 місяців тому
start.sh ea9fc3f11f s 11 місяців тому
task.py 146478f00b feat: 增加一次性任务 10 місяців тому

README.md

简体中文 | English

Image Matting

模型下载

人物抠图效果比较好,其它的没有尝试

目录

简介

Image Matting(精细化分割/影像去背/抠图)是指借由计算前景的颜色和透明度,将前景从影像中撷取出来的技术,可用于替换背景、影像合成、视觉特效,在电影工业中被广泛地使用。 影像中的每个像素会有代表其前景透明度的值,称作阿法值(Alpha),一张影像中所有阿法值的集合称作阿法遮罩(Alpha Matte),将影像被遮罩所涵盖的部分取出即可完成前景的分离。

更新动态

  • 2022.11
    • 开源自研轻量级抠图SOTA模型PP-MattingV2。对比MODNet, PP-MattingV2推理速度提升44.6%, 误差平均相对减小17.91%。
    • 调整文档结构,完善模型库信息。
    • FastDeploy部署支持PP-MattingV2, PP-Matting, PP-HumanMatting和MODNet模型。
  • 2022.07
    • 开源PP-Matting代码;新增ClosedFormMatting、KNNMatting、FastMatting、LearningBaseMatting和RandomWalksMatting传统机器学习算法;新增GCA模型。
    • 完善目录结构;支持指定指标进行评估。
  • 2022.04
    • 开源自研高精度抠图SOTA模型PP-Matting;新增PP-HumanMatting高分辨人像抠图模型。
    • 新增Grad、Conn评估指标;新增前景评估功能,利用ML算法在预测和背景替换时进行前景评估。
    • 新增GradientLoss和LaplacianLoss;新增RandomSharpen、RandomSharpen、RandomReJpeg、RSSN数据增强策略。
  • 2021.11
    • Matting项目开源, 实现图像抠图功能。
    • 支持Matting模型:DIM, MODNet;支持模型导出及Python部署;支持背景替换功能;支持人像抠图Android部署。

技术交流

  • 如果大家有使用问题和功能建议, 可以通过GitHub Issues提issue。
  • 欢迎加入PaddleSeg的微信用户群👫(扫码填写简单问卷即可入群),大家可以和值班同学、各界大佬直接进行交流,还可以领取30G重磅学习大礼包🎁
    • 🔥 获取深度学习视频教程、图像分割论文合集
    • 🔥 获取PaddleSeg的历次直播视频,最新发版信息和直播动态
    • 🔥 获取PaddleSeg自建的人像分割数据集,整理的开源数据集
    • 🔥 获取PaddleSeg在垂类场景的预训练模型和应用合集,涵盖人像分割、交互式分割等等
    • 🔥 获取PaddleSeg的全流程产业实操范例,包括质检缺陷分割、抠图Matting、道路分割等等

模型库

针对高频应用场景 —— 人像抠图,我们训练并开源了高质量人像抠图模型库。根据实际应用场景,大家可以直接部署应用,也支持进行微调训练。

模型库中包括我们自研的高精度PP-Matting模型和轻量级PP-MattingV2模型。

  • PP-Matting是PaddleSeg自研的高精度抠图模型,通过引导流设计实现语义引导下高分辨率图像抠图。追求更高精度,推荐使用该模型。 且该模型提供了512和1024两个分辨率级别的预训练模型。
  • PP-MattingV2是PaddleSeg自研的轻量级抠图SOTA模型,通过双层金字塔池化及空间注意力提取高级语义信息,并利用多级特征融合机制兼顾语义和细节的预测。 对比MODNet模型推理速度提升44.6%, 误差平均相对减小17.91%。追求更高速度,推荐使用该模型。
模型 SAD MSE Grad Conn Params(M) FLOPs(G) FPS Config File Checkpoint Inference Model
PP-MattingV2-512 40.59 0.0038 33.86 38.90 8.95 7.51 98.89 cfg model model inference
PP-Matting-512 31.56 0.0022 31.80 30.13 24.5 91.28 28.9 cfg model model inference
PP-Matting-1024 66.22 0.0088 32.90 64.80 24.5 91.28 13.4(1024X1024) cfg model model inference
PP-HumanMatting 53.15 0.0054 43.75 52.03 63.9 135.8 (2048X2048) 32.8(2048X2048) cfg model model inference
MODNet-MobileNetV2 50.07 0.0053 35.55 48.37 6.5 15.7 68.4 cfg model model inference
MODNet-ResNet50_vd 39.01 0.0038 32.29 37.38 92.2 151.6 29.0 cfg model model inference
MODNet-HRNet_W18 35.55 0.0035 31.73 34.07 10.2 28.5 62.6 cfg model model inference
DIM-VGG16 32.31 0.0233 28.89 31.45 28.4 175.5 30.4 cfg model model inference

注意

  • 指标计算数据集为PPM-100和AIM-500中的人像部分共同组成,共195张,PPM-AIM-195
  • FLOPs和FPS计算默认模型输入大小为(512, 512), GPU为Tesla V100 32G。FPS基于Paddle Inference预测库进行计算。
  • DIM为trimap-based的抠图方法,指标只计算过度区域部分,对于没有提供trimap的情况下,默认将0<alpha<255的区域以25像素为半径进行膨胀腐蚀后作为过度区域。

使用教程

社区贡献

  • 感谢钱彬(Qianbin)等开发者的贡献。
  • 感谢Jizhizi Li等提出的GFM Matting框架助力PP-Matting的算法研发。

学术引用

@article{chen2022pp,
  title={PP-Matting: High-Accuracy Natural Image Matting},
  author={Chen, Guowei and Liu, Yi and Wang, Jian and Peng, Juncai and Hao, Yuying and Chu, Lutao and Tang, Shiyu and Wu, Zewu and Chen, Zeyu and Yu, Zhiliang and others},
  journal={arXiv preprint arXiv:2204.09433},
  year={2022}
}

参考文档

https://gitee.com/paddlepaddle/PaddleSeg/blob/release/2.8/Matting/docs/quick_start_cn.md