123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import math
- import time
- import cv2
- import numpy as np
- import paddle
- import paddle.nn.functional as F
- from paddleseg import utils
- from paddleseg.core import infer
- from paddleseg.utils import logger, progbar, TimeAverager
- from ppmatting.utils import mkdir, estimate_foreground_ml
- def partition_list(arr, m):
- """split the list 'arr' into m pieces"""
- n = int(math.ceil(len(arr) / float(m)))
- return [arr[i:i + n] for i in range(0, len(arr), n)]
- def save_result(alpha, path, im_path, trimap=None, fg_estimate=True, fg=None):
- """
- Save alpha and rgba.
- Args:
- alpha (numpy.ndarray): The value of alpha should in [0, 255], shape should be [h,w].
- path (str): The save path
- im_path (str): The original image path.
- trimap (str, optional): The trimap if provided. Default: None.
- fg_estimate (bool, optional): Whether to estimate the foreground, Default: True.
- fg (numpy.ndarray, optional): The foreground, if provided, fg_estimate is invalid. Default: None.
- """
- dirname = os.path.dirname(path)
- if not os.path.exists(dirname):
- os.makedirs(dirname)
- basename = os.path.basename(path)
- name = os.path.splitext(basename)[0]
- alpha_save_path = os.path.join(dirname, name + '_alpha.png')
- rgba_save_path = os.path.join(dirname, name + '_rgba.png')
- # save alpha matte
- if trimap is not None:
- trimap = cv2.imread(trimap, 0)
- alpha[trimap == 0] = 0
- alpha[trimap == 255] = 255
- alpha = (alpha).astype('uint8')
- cv2.imwrite(alpha_save_path, alpha)
- # save rgba
- im = cv2.imread(im_path)
- if fg is None:
- if fg_estimate:
- fg = estimate_foreground_ml(im / 255.0, alpha / 255.0) * 255
- else:
- fg = im
- fg = fg.astype('uint8')
- alpha = alpha[:, :, np.newaxis]
- rgba = np.concatenate((fg, alpha), axis=-1)
- cv2.imwrite(rgba_save_path, rgba)
- return fg, alpha_save_path, rgba_save_path
- def reverse_transform(img, trans_info):
- """recover pred to origin shape"""
- for item in trans_info[::-1]:
- if item[0] == 'resize':
- h, w = item[1][0], item[1][1]
- img = F.interpolate(img, [h, w], mode='bilinear')
- elif item[0] == 'padding':
- h, w = item[1][0], item[1][1]
- img = img[:, :, 0:h, 0:w]
- else:
- raise Exception("Unexpected info '{}' in im_info".format(item[0]))
- return img
- def preprocess(img, transforms, trimap=None):
- data = {}
- data['img'] = img
- if trimap is not None:
- data['trimap'] = trimap
- data['gt_fields'] = ['trimap']
- data['trans_info'] = []
- data = transforms(data)
- data['img'] = paddle.to_tensor(data['img'])
- data['img'] = data['img'].unsqueeze(0)
- if trimap is not None:
- data['trimap'] = paddle.to_tensor(data['trimap'])
- data['trimap'] = data['trimap'].unsqueeze((0, 1))
- return data
- def load(model, model_path):
- utils.utils.load_entire_model(model, model_path)
- model.eval()
- def predict(model,
- model_path,
- transforms,
- image_list,
- image_dir=None,
- trimap_list=None,
- save_dir='output',
- fg_estimate=True):
- """
- predict and visualize the image_list.
- Args:
- model (nn.Layer): Used to predict for input image.
- model_path (str): The path of pretrained model.
- transforms (transforms.Compose): Preprocess for input image.
- image_list (list): A list of image path to be predicted.
- image_dir (str, optional): The root directory of the images predicted. Default: None.
- trimap_list (list, optional): A list of trimap of image_list. Default: None.
- save_dir (str, optional): The directory to save the visualized results. Default: 'output'.
- """
- # utils.utils.load_entire_model(model, model_path)
- # model.eval()
- nranks = paddle.distributed.get_world_size()
- local_rank = paddle.distributed.get_rank()
- if nranks > 1:
- img_lists = partition_list(image_list, nranks)
- trimap_lists = partition_list(
- trimap_list, nranks) if trimap_list is not None else None
- else:
- img_lists = [image_list]
- trimap_lists = [trimap_list] if trimap_list is not None else None
- logger.info("Start to predict...")
- progbar_pred = progbar.Progbar(target=len(img_lists[0]), verbose=1)
- preprocess_cost_averager = TimeAverager()
- infer_cost_averager = TimeAverager()
- postprocess_cost_averager = TimeAverager()
- batch_start = time.time()
- with paddle.no_grad():
- for i, im_path in enumerate(img_lists[local_rank]):
- preprocess_start = time.time()
- trimap = trimap_lists[local_rank][
- i] if trimap_list is not None else None
- data = preprocess(img=im_path, transforms=transforms, trimap=trimap)
- preprocess_cost_averager.record(time.time() - preprocess_start)
- infer_start = time.time()
- result = model(data)
- infer_cost_averager.record(time.time() - infer_start)
- postprocess_start = time.time()
- if isinstance(result, paddle.Tensor):
- alpha = result
- fg = None
- else:
- alpha = result['alpha']
- fg = result.get('fg', None)
- alpha = reverse_transform(alpha, data['trans_info'])
- alpha = (alpha.numpy()).squeeze()
- alpha = (alpha * 255).astype('uint8')
- if fg is not None:
- fg = reverse_transform(fg, data['trans_info'])
- fg = (fg.numpy()).squeeze().transpose((1, 2, 0))
- fg = (fg * 255).astype('uint8')
- # get the saved name
- if image_dir is not None:
- im_file = im_path.replace(image_dir, '')
- else:
- im_file = os.path.basename(im_path)
- if im_file[0] == '/' or im_file[0] == '\\':
- im_file = im_file[1:]
- save_path = os.path.join(save_dir, im_file)
- mkdir(save_path)
- fg,alpha_save_path, rgba_save_path = save_result(
- alpha,
- save_path,
- im_path=im_path,
- trimap=trimap,
- fg_estimate=fg_estimate,
- fg=fg)
- # rvm have member which need to reset.
- if hasattr(model, 'reset'):
- model.reset()
- postprocess_cost_averager.record(time.time() - postprocess_start)
- preprocess_cost = preprocess_cost_averager.get_average()
- infer_cost = infer_cost_averager.get_average()
- postprocess_cost = postprocess_cost_averager.get_average()
- if local_rank == 0:
- progbar_pred.update(i + 1,
- [('preprocess_cost', preprocess_cost),
- ('infer_cost cost', infer_cost),
- ('postprocess_cost', postprocess_cost)])
- preprocess_cost_averager.reset()
- infer_cost_averager.reset()
- postprocess_cost_averager.reset()
- return alpha, fg, alpha_save_path, rgba_save_path
|