123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import cv2
- import numpy as np
- import time
- import paddle
- import paddle.nn.functional as F
- from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar
- from ppmatting.metrics import metric
- from pymatting.util.util import load_image, save_image, stack_images
- from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
- np.set_printoptions(suppress=True)
- def save_alpha_pred(alpha, path):
- """
- The value of alpha is range [0, 1], shape should be [h,w]
- """
- dirname = os.path.dirname(path)
- if not os.path.exists(dirname):
- os.makedirs(dirname)
- alpha = (alpha).astype('uint8')
- cv2.imwrite(path, alpha)
- def reverse_transform(alpha, trans_info):
- """recover pred to origin shape"""
- for item in trans_info[::-1]:
- if item[0][0] == 'resize':
- h, w = int(item[1][0]), int(item[1][1])
- alpha = cv2.resize(alpha, dsize=(w, h))
- elif item[0][0] == 'padding':
- h, w = int(item[1][0]), int(item[1][1])
- alpha = alpha[0:h, 0:w]
- else:
- raise Exception("Unexpected info '{}' in im_info".format(item[0]))
- return alpha
- def evaluate_ml(model,
- eval_dataset,
- num_workers=0,
- print_detail=True,
- save_dir='output/results',
- save_results=True):
- loader = paddle.io.DataLoader(
- eval_dataset,
- batch_size=1,
- drop_last=False,
- num_workers=num_workers,
- return_list=True, )
- total_iters = len(loader)
- mse_metric = metric.MSE()
- sad_metric = metric.SAD()
- grad_metric = metric.Grad()
- conn_metric = metric.Conn()
- if print_detail:
- logger.info("Start evaluating (total_samples: {}, total_iters: {})...".
- format(len(eval_dataset), total_iters))
- progbar_val = progbar.Progbar(target=total_iters, verbose=1)
- reader_cost_averager = TimeAverager()
- batch_cost_averager = TimeAverager()
- batch_start = time.time()
- img_name = ''
- i = 0
- ignore_cnt = 0
- for iter, data in enumerate(loader):
- reader_cost_averager.record(time.time() - batch_start)
- image_rgb_chw = data['img'].numpy()[0]
- image_rgb_hwc = np.transpose(image_rgb_chw, (1, 2, 0))
- trimap = data['trimap'].numpy().squeeze() / 255.0
- image = image_rgb_hwc * 0.5 + 0.5 # reverse normalize (x/255 - mean) / std
- is_fg = trimap >= 0.9
- is_bg = trimap <= 0.1
- if is_fg.sum() == 0 or is_bg.sum() == 0:
- ignore_cnt += 1
- logger.info(str(iter))
- continue
- alpha_pred = model(image, trimap)
- alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
- alpha_gt = data['alpha'].numpy().squeeze() * 255
- trimap = data['ori_trimap'].numpy().squeeze()
- alpha_pred = np.round(alpha_pred * 255)
- mse = mse_metric.update(alpha_pred, alpha_gt, trimap)
- sad = sad_metric.update(alpha_pred, alpha_gt, trimap)
- grad = grad_metric.update(alpha_pred, alpha_gt, trimap)
- conn = conn_metric.update(alpha_pred, alpha_gt, trimap)
- if sad > 1000:
- print(data['img_name'][0])
- if save_results:
- alpha_pred_one = alpha_pred
- alpha_pred_one[trimap == 255] = 255
- alpha_pred_one[trimap == 0] = 0
- save_name = data['img_name'][0]
- name, ext = os.path.splitext(save_name)
- if save_name == img_name:
- save_name = name + '_' + str(i) + ext
- i += 1
- else:
- img_name = save_name
- save_name = name + '_' + str(0) + ext
- i = 1
- save_alpha_pred(alpha_pred_one, os.path.join(save_dir, save_name))
- batch_cost_averager.record(
- time.time() - batch_start, num_samples=len(alpha_gt))
- batch_cost = batch_cost_averager.get_average()
- reader_cost = reader_cost_averager.get_average()
- if print_detail:
- progbar_val.update(iter + 1,
- [('SAD', sad), ('MSE', mse), ('Grad', grad),
- ('Conn', conn), ('batch_cost', batch_cost),
- ('reader cost', reader_cost)])
- reader_cost_averager.reset()
- batch_cost_averager.reset()
- batch_start = time.time()
- mse = mse_metric.evaluate()
- sad = sad_metric.evaluate()
- grad = grad_metric.evaluate()
- conn = conn_metric.evaluate()
- logger.info('[EVAL] SAD: {:.4f}, MSE: {:.4f}, Grad: {:.4f}, Conn: {:.4f}'.
- format(sad, mse, grad, conn))
- logger.info('{}'.format(ignore_cnt))
- return sad, mse, grad, conn
|