123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import random
- import string
- import cv2
- import numpy as np
- from paddleseg.transforms import functional
- from paddleseg.cvlibs import manager
- from paddleseg.utils import seg_env
- from PIL import Image
- @manager.TRANSFORMS.add_component
- class Compose:
- """
- Do transformation on input data with corresponding pre-processing and augmentation operations.
- The shape of input data to all operations is [height, width, channels].
- """
- def __init__(self, transforms, to_rgb=True):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- self.transforms = transforms
- self.to_rgb = to_rgb
- def __call__(self, data):
- """
- Args:
- data (dict): The data to transform.
- Returns:
- dict: Data after transformation
- """
- if 'trans_info' not in data:
- data['trans_info'] = []
- for op in self.transforms:
- data = op(data)
- if data is None:
- return None
- data['img'] = np.transpose(data['img'], (2, 0, 1))
- for key in data.get('gt_fields', []):
- if len(data[key].shape) == 2:
- continue
- data[key] = np.transpose(data[key], (2, 0, 1))
- return data
- @manager.TRANSFORMS.add_component
- class LoadImages:
- def __init__(self, to_rgb=True):
- self.to_rgb = to_rgb
- def __call__(self, data):
- if isinstance(data['img'], str):
- data['img'] = cv2.imread(data['img'])
- for key in data.get('gt_fields', []):
- if isinstance(data[key], str):
- data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
- # if alpha and trimap has 3 channels, extract one.
- if key in ['alpha', 'trimap']:
- if len(data[key].shape) > 2:
- data[key] = data[key][:, :, 0]
- if self.to_rgb:
- data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
- for key in data.get('gt_fields', []):
- if len(data[key].shape) == 2:
- continue
- data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)
- return data
- @manager.TRANSFORMS.add_component
- class Resize:
- def __init__(self, target_size=(512, 512), random_interp=False):
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise ValueError(
- '`target_size` should include 2 elements, but it is {}'.
- format(target_size))
- else:
- raise TypeError(
- "Type of `target_size` is invalid. It should be list or tuple, but it is {}"
- .format(type(target_size)))
- self.target_size = target_size
- self.random_interp = random_interp
- self.interps = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC]
- def __call__(self, data):
- if self.random_interp:
- interp = np.random.choice(self.interps)
- else:
- interp = cv2.INTER_LINEAR
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- data['img'] = functional.resize(data['img'], self.target_size, interp)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize(data[key], self.target_size,
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize(data[key], self.target_size,
- interp)
- return data
- @manager.TRANSFORMS.add_component
- class RandomResize:
- """
- Resize image to a size determinned by `scale` and `size`.
- Args:
- size(tuple|list): The reference size to resize. A tuple or list with length 2.
- scale(tupel|list, optional): A range of scale base on `size`. A tuple or list with length 2. Default: None.
- """
- def __init__(self, size=None, scale=None):
- if isinstance(size, list) or isinstance(size, tuple):
- if len(size) != 2:
- raise ValueError(
- '`size` should include 2 elements, but it is {}'.format(
- size))
- elif size is not None:
- raise TypeError(
- "Type of `size` is invalid. It should be list or tuple, but it is {}"
- .format(type(size)))
- if scale is not None:
- if isinstance(scale, list) or isinstance(scale, tuple):
- if len(scale) != 2:
- raise ValueError(
- '`scale` should include 2 elements, but it is {}'.
- format(scale))
- else:
- raise TypeError(
- "Type of `scale` is invalid. It should be list or tuple, but it is {}"
- .format(type(scale)))
- self.size = size
- self.scale = scale
- def __call__(self, data):
- h, w = data['img'].shape[:2]
- if self.scale is not None:
- scale = np.random.uniform(self.scale[0], self.scale[1])
- else:
- scale = 1.
- if self.size is not None:
- scale_factor = max(self.size[0] / w, self.size[1] / h)
- else:
- scale_factor = 1
- scale = scale * scale_factor
- w = int(round(w * scale))
- h = int(round(h * scale))
- data['img'] = functional.resize(data['img'], (w, h))
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize(data[key], (w, h),
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize(data[key], (w, h))
- return data
- @manager.TRANSFORMS.add_component
- class ResizeByLong:
- """
- Resize the long side of an image to given size, and then scale the other side proportionally.
- Args:
- long_size (int): The target size of long side.
- """
- def __init__(self, long_size):
- self.long_size = long_size
- def __call__(self, data):
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- data['img'] = functional.resize_long(data['img'], self.long_size)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize_long(data[key], self.long_size,
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize_long(data[key], self.long_size)
- return data
- @manager.TRANSFORMS.add_component
- class ResizeByShort:
- """
- Resize the short side of an image to given size, and then scale the other side proportionally.
- Args:
- short_size (int): The target size of short side.
- """
- def __init__(self, short_size):
- self.short_size = short_size
- def __call__(self, data):
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- data['img'] = functional.resize_short(data['img'], self.short_size)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize_short(data[key], self.short_size,
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize_short(data[key], self.short_size)
- return data
- @manager.TRANSFORMS.add_component
- class ResizeToIntMult:
- """
- Resize to some int muitple, d.g. 32.
- """
- def __init__(self, mult_int=32):
- self.mult_int = mult_int
- def __call__(self, data):
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- h, w = data['img'].shape[0:2]
- rw = w - w % self.mult_int
- rh = h - h % self.mult_int
- data['img'] = functional.resize(data['img'], (rw, rh))
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize(data[key], (rw, rh),
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize(data[key], (rw, rh))
- return data
- @manager.TRANSFORMS.add_component
- class Normalize:
- """
- Normalize an image.
- Args:
- mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
- std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
- Raises:
- ValueError: When mean/std is not list or any value in std is 0.
- """
- def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean,
- (list, tuple)) and isinstance(self.std,
- (list, tuple))):
- raise ValueError(
- "{}: input type is invalid. It should be list or tuple".format(
- self))
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise ValueError('{}: std is invalid!'.format(self))
- def __call__(self, data):
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- data['img'] = functional.normalize(data['img'], mean, std)
- if 'fg' in data.get('gt_fields', []):
- data['fg'] = functional.normalize(data['fg'], mean, std)
- if 'bg' in data.get('gt_fields', []):
- data['bg'] = functional.normalize(data['bg'], mean, std)
- return data
- @manager.TRANSFORMS.add_component
- class RandomCropByAlpha:
- """
- Randomly crop while centered on uncertain area by a certain probability.
- Args:
- crop_size (tuple|list): The size you want to crop from image.
- p (float): The probability centered on uncertain area.
- """
- def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)),
- prob=0.5):
- self.crop_size = crop_size
- self.prob = prob
- def __call__(self, data):
- idex = np.random.randint(low=0, high=len(self.crop_size))
- crop_w, crop_h = self.crop_size[idex]
- img_h = data['img'].shape[0]
- img_w = data['img'].shape[1]
- if np.random.rand() < self.prob:
- crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255))
- center_h_array, center_w_array = crop_center
- if len(center_h_array) == 0:
- return data
- rand_ind = np.random.randint(len(center_h_array))
- center_h = center_h_array[rand_ind]
- center_w = center_w_array[rand_ind]
- delta_h = crop_h // 2
- delta_w = crop_w // 2
- start_h = max(0, center_h - delta_h)
- start_w = max(0, center_w - delta_w)
- else:
- start_h = 0
- start_w = 0
- if img_h > crop_h:
- start_h = np.random.randint(img_h - crop_h + 1)
- if img_w > crop_w:
- start_w = np.random.randint(img_w - crop_w + 1)
- end_h = min(img_h, start_h + crop_h)
- end_w = min(img_w, start_w + crop_w)
- data['img'] = data['img'][start_h:end_h, start_w:end_w]
- for key in data.get('gt_fields', []):
- data[key] = data[key][start_h:end_h, start_w:end_w]
- return data
- @manager.TRANSFORMS.add_component
- class RandomCrop:
- """
- Randomly crop
- Args:
- crop_size (tuple|list): The size you want to crop from image.
- """
- def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))):
- if not isinstance(crop_size[0], (list, tuple)):
- crop_size = [crop_size]
- self.crop_size = crop_size
- def __call__(self, data):
- idex = np.random.randint(low=0, high=len(self.crop_size))
- crop_w, crop_h = self.crop_size[idex]
- img_h, img_w = data['img'].shape[0:2]
- start_h = 0
- start_w = 0
- if img_h > crop_h:
- start_h = np.random.randint(img_h - crop_h + 1)
- if img_w > crop_w:
- start_w = np.random.randint(img_w - crop_w + 1)
- end_h = min(img_h, start_h + crop_h)
- end_w = min(img_w, start_w + crop_w)
- data['img'] = data['img'][start_h:end_h, start_w:end_w]
- for key in data.get('gt_fields', []):
- data[key] = data[key][start_h:end_h, start_w:end_w]
- return data
- @manager.TRANSFORMS.add_component
- class LimitLong:
- """
- Limit the long edge of image.
- If the long edge is larger than max_long, resize the long edge
- to max_long, while scale the short edge proportionally.
- If the long edge is smaller than min_long, resize the long edge
- to min_long, while scale the short edge proportionally.
- Args:
- max_long (int, optional): If the long edge of image is larger than max_long,
- it will be resize to max_long. Default: None.
- min_long (int, optional): If the long edge of image is smaller than min_long,
- it will be resize to min_long. Default: None.
- """
- def __init__(self, max_long=None, min_long=None):
- if max_long is not None:
- if not isinstance(max_long, int):
- raise TypeError(
- "Type of `max_long` is invalid. It should be int, but it is {}"
- .format(type(max_long)))
- if min_long is not None:
- if not isinstance(min_long, int):
- raise TypeError(
- "Type of `min_long` is invalid. It should be int, but it is {}"
- .format(type(min_long)))
- if (max_long is not None) and (min_long is not None):
- if min_long > max_long:
- raise ValueError(
- '`max_long should not smaller than min_long, but they are {} and {}'
- .format(max_long, min_long))
- self.max_long = max_long
- self.min_long = min_long
- def __call__(self, data):
- h, w = data['img'].shape[:2]
- long_edge = max(h, w)
- target = long_edge
- if (self.max_long is not None) and (long_edge > self.max_long):
- target = self.max_long
- elif (self.min_long is not None) and (long_edge < self.min_long):
- target = self.min_long
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- if target != long_edge:
- data['img'] = functional.resize_long(data['img'], target)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize_long(data[key], target,
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize_long(data[key], target)
- return data
- @manager.TRANSFORMS.add_component
- class LimitShort:
- """
- Limit the short edge of image.
- If the short edge is larger than max_short, resize the short edge
- to max_short, while scale the long edge proportionally.
- If the short edge is smaller than min_short, resize the short edge
- to min_short, while scale the long edge proportionally.
- Args:
- max_short (int, optional): If the short edge of image is larger than max_short,
- it will be resize to max_short. Default: None.
- min_short (int, optional): If the short edge of image is smaller than min_short,
- it will be resize to min_short. Default: None.
- """
- def __init__(self, max_short=None, min_short=None):
- if max_short is not None:
- if not isinstance(max_short, int):
- raise TypeError(
- "Type of `max_short` is invalid. It should be int, but it is {}"
- .format(type(max_short)))
- if min_short is not None:
- if not isinstance(min_short, int):
- raise TypeError(
- "Type of `min_short` is invalid. It should be int, but it is {}"
- .format(type(min_short)))
- if (max_short is not None) and (min_short is not None):
- if min_short > max_short:
- raise ValueError(
- '`max_short should not smaller than min_short, but they are {} and {}'
- .format(max_short, min_short))
- self.max_short = max_short
- self.min_short = min_short
- def __call__(self, data):
- h, w = data['img'].shape[:2]
- short_edge = min(h, w)
- target = short_edge
- if (self.max_short is not None) and (short_edge > self.max_short):
- target = self.max_short
- elif (self.min_short is not None) and (short_edge < self.min_short):
- target = self.min_short
- data['trans_info'].append(('resize', data['img'].shape[0:2]))
- if target != short_edge:
- data['img'] = functional.resize_short(data['img'], target)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- data[key] = functional.resize_short(data[key], target,
- cv2.INTER_NEAREST)
- else:
- data[key] = functional.resize_short(data[key], target)
- return data
- @manager.TRANSFORMS.add_component
- class RandomHorizontalFlip:
- """
- Flip an image horizontally with a certain probability.
- Args:
- prob (float, optional): A probability of horizontally flipping. Default: 0.5.
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- def __call__(self, data):
- if random.random() < self.prob:
- data['img'] = functional.horizontal_flip(data['img'])
- for key in data.get('gt_fields', []):
- data[key] = functional.horizontal_flip(data[key])
- return data
- @manager.TRANSFORMS.add_component
- class RandomBlur:
- """
- Blurring an image by a Gaussian function with a certain probability.
- Args:
- prob (float, optional): A probability of blurring an image. Default: 0.1.
- """
- def __init__(self, prob=0.1):
- self.prob = prob
- def __call__(self, data):
- if self.prob <= 0:
- n = 0
- elif self.prob >= 1:
- n = 1
- else:
- n = int(1.0 / self.prob)
- if n > 0:
- if np.random.randint(0, n) == 0:
- radius = np.random.randint(3, 10)
- if radius % 2 != 1:
- radius = radius + 1
- if radius > 9:
- radius = 9
- data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0,
- 0)
- for key in data.get('gt_fields', []):
- if key == 'trimap':
- continue
- data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0,
- 0)
- return data
- @manager.TRANSFORMS.add_component
- class RandomDistort:
- """
- Distort an image with random configurations.
- Args:
- brightness_range (float, optional): A range of brightness. Default: 0.5.
- brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
- contrast_range (float, optional): A range of contrast. Default: 0.5.
- contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
- saturation_range (float, optional): A range of saturation. Default: 0.5.
- saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
- hue_range (int, optional): A range of hue. Default: 18.
- hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, data):
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [
- functional.brightness, functional.contrast, functional.saturation,
- functional.hue
- ]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- im = data['img'].astype('uint8')
- im = Image.fromarray(im)
- for id in range(len(ops)):
- params = params_dict[ops[id].__name__]
- params['im'] = im
- prob = prob_dict[ops[id].__name__]
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- data['img'] = np.asarray(im)
- for key in data.get('gt_fields', []):
- if key in ['alpha', 'trimap']:
- continue
- else:
- im = data[key].astype('uint8')
- im = Image.fromarray(im)
- for id in range(len(ops)):
- params = params_dict[ops[id].__name__]
- params['im'] = im
- prob = prob_dict[ops[id].__name__]
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- data[key] = np.asarray(im)
- return data
- @manager.TRANSFORMS.add_component
- class Padding:
- """
- Add bottom-right padding to a raw image or annotation image.
- Args:
- target_size (list|tuple): The target size after padding.
- im_padding_value (list, optional): The padding value of raw image.
- Default: [127.5, 127.5, 127.5].
- label_padding_value (int, optional): The padding value of annotation image. Default: 255.
- Raises:
- TypeError: When target_size is neither list nor tuple.
- ValueError: When the length of target_size is not 2.
- """
- def __init__(self, target_size, im_padding_value=(127.5, 127.5, 127.5)):
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise ValueError(
- '`target_size` should include 2 elements, but it is {}'.
- format(target_size))
- else:
- raise TypeError(
- "Type of target_size is invalid. It should be list or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- self.im_padding_value = im_padding_value
- def __call__(self, data):
- im_height, im_width = data['img'].shape[0], data['img'].shape[1]
- target_height = self.target_size[1]
- target_width = self.target_size[0]
- pad_height = max(0, target_height - im_height)
- pad_width = max(0, target_width - im_width)
- data['trans_info'].append(('padding', data['img'].shape[0:2]))
- if (pad_height == 0) and (pad_width == 0):
- return data
- else:
- data['img'] = cv2.copyMakeBorder(
- data['img'],
- 0,
- pad_height,
- 0,
- pad_width,
- cv2.BORDER_CONSTANT,
- value=self.im_padding_value)
- for key in data.get('gt_fields', []):
- if key in ['trimap', 'alpha']:
- value = 0
- else:
- value = self.im_padding_value
- data[key] = cv2.copyMakeBorder(
- data[key],
- 0,
- pad_height,
- 0,
- pad_width,
- cv2.BORDER_CONSTANT,
- value=value)
- return data
- @manager.TRANSFORMS.add_component
- class RandomSharpen:
- def __init__(self, prob=0.1):
- if prob < 0:
- self.prob = 0
- elif prob > 1:
- self.prob = 1
- else:
- self.prob = prob
- def __call__(self, data):
- if np.random.rand() > self.prob:
- return data
- radius = np.random.choice([0, 3, 5, 7, 9])
- w = np.random.uniform(0.1, 0.5)
- blur_img = cv2.GaussianBlur(data['img'], (radius, radius), 5)
- data['img'] = cv2.addWeighted(data['img'], 1 + w, blur_img, -w, 0)
- for key in data.get('gt_fields', []):
- if key == 'trimap' or key == 'alpha':
- continue
- blur_img = cv2.GaussianBlur(data[key], (0, 0), 5)
- data[key] = cv2.addWeighted(data[key], 1.5, blur_img, -0.5, 0)
- return data
- @manager.TRANSFORMS.add_component
- class RandomNoise:
- def __init__(self, prob=0.1):
- if prob < 0:
- self.prob = 0
- elif prob > 1:
- self.prob = 1
- else:
- self.prob = prob
- def __call__(self, data):
- if np.random.rand() > self.prob:
- return data
- mean = np.random.uniform(0, 0.04)
- var = np.random.uniform(0, 0.001)
- noise = np.random.normal(mean, var**0.5, data['img'].shape) * 255
- data['img'] = data['img'] + noise
- data['img'] = np.clip(data['img'], 0, 255)
- return data
- @manager.TRANSFORMS.add_component
- class RandomReJpeg:
- def __init__(self, prob=0.1):
- if prob < 0:
- self.prob = 0
- elif prob > 1:
- self.prob = 1
- else:
- self.prob = prob
- def __call__(self, data):
- if np.random.rand() > self.prob:
- return data
- q = np.random.randint(70, 95)
- img = data['img'].astype('uint8')
- # Ensure no conflicts between processes
- tmp_name = str(os.getpid()) + '.jpg'
- tmp_name = os.path.join(seg_env.TMP_HOME, tmp_name)
- cv2.imwrite(tmp_name, img, [int(cv2.IMWRITE_JPEG_QUALITY), q])
- data['img'] = cv2.imread(tmp_name)
- return data
|