runtime-parameters.yaml 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. tracking:
  2. enabled: true
  3. auth:
  4. enabled: true
  5. username: vib-user
  6. password: "ComplicatedPassword123!4"
  7. extraOverrides:
  8. default_permission: WRITE
  9. containerPorts:
  10. http: 8100
  11. service:
  12. type: LoadBalancer
  13. ports:
  14. http: 80
  15. serviceAccount:
  16. create: true
  17. automountServiceAccountToken: true
  18. containerSecurityContext:
  19. enabled: true
  20. runAsUser: 1002
  21. runAsGroup: 1002
  22. runAsNonRoot: true
  23. readOnlyRootFilesystem: true
  24. allowPrivilegeEscalation: false
  25. capabilities:
  26. drop: ["ALL"]
  27. podSecurityContext:
  28. enabled: true
  29. fsGroup: 1002
  30. seccompProfile:
  31. type: RuntimeDefault
  32. persistence:
  33. enabled: true
  34. mountPath: /vib-mlflow/test
  35. metrics:
  36. enabled: true
  37. run:
  38. enabled: true
  39. useJob: true
  40. source:
  41. launchCommand: "python vib_test.py"
  42. configMap:
  43. # Example taken from the MLFlow UI (https://mlflow.org/docs/latest/ml/tracking/tutorials/local-database#step-3-start-logging)
  44. vib_test.py: |
  45. import mlflow
  46. from sklearn.model_selection import train_test_split
  47. from sklearn.datasets import load_diabetes
  48. from sklearn.ensemble import RandomForestRegressor
  49. mlflow.sklearn.autolog()
  50. db = load_diabetes()
  51. X_train, X_test, y_train, y_test = train_test_split(db.data, db.target)
  52. # Create and train models.
  53. rf = RandomForestRegressor(n_estimators=100, max_depth=6, max_features=3)
  54. rf.fit(X_train, y_train)
  55. # Use the model to make predictions on the test dataset.
  56. predictions = rf.predict(X_test)