123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py
- # Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%)
- # Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm)
- # So do not report results calculated by these functions in your paper.
- # Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`.
- import cv2
- import numpy as np
- from scipy.ndimage.filters import convolve
- from scipy.special import gamma
- from skimage.measure import label
- class MSE:
- """
- Only calculate the unknown region if trimap provided.
- """
- def __init__(self):
- self.mse_diffs = 0
- self.count = 0
- def update(self, pred, gt, trimap=None):
- """
- update metric.
- Args:
- pred (np.ndarray): The value range is [0., 255.].
- gt (np.ndarray): The value range is [0, 255].
- trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None.
- """
- if trimap is None:
- trimap = np.ones_like(gt) * 128
- if not (pred.shape == gt.shape == trimap.shape):
- raise ValueError(
- 'The shape of `pred`, `gt` and `trimap` should be equal. '
- 'but they are {}, {} and {}'.format(pred.shape, gt.shape,
- trimap.shape))
- pred[trimap == 0] = 0
- pred[trimap == 255] = 255
- mask = trimap == 128
- pixels = float(mask.sum())
- pred = pred / 255.
- gt = gt / 255.
- diff = (pred - gt) * mask
- mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0
- self.mse_diffs += mse_diff
- self.count += 1
- return mse_diff
- def evaluate(self):
- mse = self.mse_diffs / self.count if self.count > 0 else 0
- return mse
- class SAD:
- """
- Only calculate the unknown region if trimap provided.
- """
- def __init__(self):
- self.sad_diffs = 0
- self.count = 0
- def update(self, pred, gt, trimap=None):
- """
- update metric.
- Args:
- pred (np.ndarray): The value range is [0., 255.].
- gt (np.ndarray): The value range is [0., 255.].
- trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
- """
- if trimap is None:
- trimap = np.ones_like(gt) * 128
- if not (pred.shape == gt.shape == trimap.shape):
- raise ValueError(
- 'The shape of `pred`, `gt` and `trimap` should be equal. '
- 'but they are {}, {} and {}'.format(pred.shape, gt.shape,
- trimap.shape))
- pred[trimap == 0] = 0
- pred[trimap == 255] = 255
- mask = trimap == 128
- pred = pred / 255.
- gt = gt / 255.
- diff = (pred - gt) * mask
- sad_diff = (np.abs(diff)).sum()
- sad_diff /= 1000
- self.sad_diffs += sad_diff
- self.count += 1
- return sad_diff
- def evaluate(self):
- sad = self.sad_diffs / self.count if self.count > 0 else 0
- return sad
- class Grad:
- """
- Only calculate the unknown region if trimap provided.
- Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
- """
- def __init__(self):
- self.grad_diffs = 0
- self.count = 0
- def gaussian(self, x, sigma):
- return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi))
- def dgaussian(self, x, sigma):
- return -x * self.gaussian(x, sigma) / sigma**2
- def gauss_filter(self, sigma, epsilon=1e-2):
- half_size = np.ceil(
- sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon)))
- size = int(2 * half_size + 1)
- # create filter in x axis
- filter_x = np.zeros((size, size))
- for i in range(size):
- for j in range(size):
- filter_x[i, j] = self.gaussian(
- i - half_size, sigma) * self.dgaussian(j - half_size, sigma)
- # normalize filter
- norm = np.sqrt((filter_x**2).sum())
- filter_x = filter_x / norm
- filter_y = np.transpose(filter_x)
- return filter_x, filter_y
- def gauss_gradient(self, img, sigma):
- filter_x, filter_y = self.gauss_filter(sigma)
- img_filtered_x = cv2.filter2D(
- img, -1, filter_x, borderType=cv2.BORDER_REPLICATE)
- img_filtered_y = cv2.filter2D(
- img, -1, filter_y, borderType=cv2.BORDER_REPLICATE)
- return np.sqrt(img_filtered_x**2 + img_filtered_y**2)
- def update(self, pred, gt, trimap=None, sigma=1.4):
- """
- update metric.
- Args:
- pred (np.ndarray): The value range is [0., 1.].
- gt (np.ndarray): The value range is [0, 255].
- trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
- sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4.
- """
- if trimap is None:
- trimap = np.ones_like(gt) * 128
- if not (pred.shape == gt.shape == trimap.shape):
- raise ValueError(
- 'The shape of `pred`, `gt` and `trimap` should be equal. '
- 'but they are {}, {} and {}'.format(pred.shape, gt.shape,
- trimap.shape))
- pred[trimap == 0] = 0
- pred[trimap == 255] = 255
- gt = gt.squeeze()
- pred = pred.squeeze()
- gt = gt.astype(np.float64)
- pred = pred.astype(np.float64)
- gt_normed = np.zeros_like(gt)
- pred_normed = np.zeros_like(pred)
- cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX)
- cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX)
- gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32)
- pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32)
- grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum()
- grad_diff /= 1000
- self.grad_diffs += grad_diff
- self.count += 1
- return grad_diff
- def evaluate(self):
- grad = self.grad_diffs / self.count if self.count > 0 else 0
- return grad
- class Conn:
- """
- Only calculate the unknown region if trimap provided.
- Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
- """
- def __init__(self):
- self.conn_diffs = 0
- self.count = 0
- def update(self, pred, gt, trimap=None, step=0.1):
- """
- update metric.
- Args:
- pred (np.ndarray): The value range is [0., 1.].
- gt (np.ndarray): The value range is [0, 255].
- trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
- step (float, optional): Step of threshold when computing intersection between
- `gt` and `pred`. Default: 0.1.
- """
- if trimap is None:
- trimap = np.ones_like(gt) * 128
- if not (pred.shape == gt.shape == trimap.shape):
- raise ValueError(
- 'The shape of `pred`, `gt` and `trimap` should be equal. '
- 'but they are {}, {} and {}'.format(pred.shape, gt.shape,
- trimap.shape))
- pred[trimap == 0] = 0
- pred[trimap == 255] = 255
- gt = gt.squeeze()
- pred = pred.squeeze()
- gt = gt.astype(np.float32) / 255
- pred = pred.astype(np.float32) / 255
- thresh_steps = np.arange(0, 1 + step, step)
- round_down_map = -np.ones_like(gt)
- for i in range(1, len(thresh_steps)):
- gt_thresh = gt >= thresh_steps[i]
- pred_thresh = pred >= thresh_steps[i]
- intersection = (gt_thresh & pred_thresh).astype(np.uint8)
- # connected components
- _, output, stats, _ = cv2.connectedComponentsWithStats(
- intersection, connectivity=4)
- # start from 1 in dim 0 to exclude background
- size = stats[1:, -1]
- # largest connected component of the intersection
- omega = np.zeros_like(gt)
- if len(size) != 0:
- max_id = np.argmax(size)
- # plus one to include background
- omega[output == max_id + 1] = 1
- mask = (round_down_map == -1) & (omega == 0)
- round_down_map[mask] = thresh_steps[i - 1]
- round_down_map[round_down_map == -1] = 1
- gt_diff = gt - round_down_map
- pred_diff = pred - round_down_map
- # only calculate difference larger than or equal to 0.15
- gt_phi = 1 - gt_diff * (gt_diff >= 0.15)
- pred_phi = 1 - pred_diff * (pred_diff >= 0.15)
- conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128))
- conn_diff /= 1000
- self.conn_diffs += conn_diff
- self.count += 1
- return conn_diff
- def evaluate(self):
- conn = self.conn_diffs / self.count if self.count > 0 else 0
- return conn
|