123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting
- # and https://github.com/open-mmlab/mmediting
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddleseg.cvlibs import manager, param_init
- from paddleseg.utils import utils
- from ppmatting.models.layers import GuidedCxtAtten
- class ResNet_D(nn.Layer):
- def __init__(self,
- input_channels,
- layers,
- late_downsample=False,
- pretrained=None):
- super().__init__()
- self.pretrained = pretrained
- self._norm_layer = nn.BatchNorm
- self.inplanes = 64
- self.late_downsample = late_downsample
- self.midplanes = 64 if late_downsample else 32
- self.start_stride = [1, 2, 1, 2] if late_downsample else [2, 1, 2, 1]
- self.conv1 = nn.utils.spectral_norm(
- nn.Conv2D(
- input_channels,
- 32,
- kernel_size=3,
- stride=self.start_stride[0],
- padding=1,
- bias_attr=False))
- self.conv2 = nn.utils.spectral_norm(
- nn.Conv2D(
- 32,
- self.midplanes,
- kernel_size=3,
- stride=self.start_stride[1],
- padding=1,
- bias_attr=False))
- self.conv3 = nn.utils.spectral_norm(
- nn.Conv2D(
- self.midplanes,
- self.inplanes,
- kernel_size=3,
- stride=self.start_stride[2],
- padding=1,
- bias_attr=False))
- self.bn1 = self._norm_layer(32)
- self.bn2 = self._norm_layer(self.midplanes)
- self.bn3 = self._norm_layer(self.inplanes)
- self.activation = nn.ReLU()
- self.layer1 = self._make_layer(
- BasicBlock, 64, layers[0], stride=self.start_stride[3])
- self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(BasicBlock, 256, layers[2], stride=2)
- self.layer_bottleneck = self._make_layer(
- BasicBlock, 512, layers[3], stride=2)
- self.init_weight()
- def _make_layer(self, block, planes, block_num, stride=1):
- if block_num == 0:
- return nn.Sequential(nn.Identity())
- norm_layer = self._norm_layer
- downsample = None
- if stride != 1:
- downsample = nn.Sequential(
- nn.AvgPool2D(2, stride),
- nn.utils.spectral_norm(
- conv1x1(self.inplanes, planes * block.expansion)),
- norm_layer(planes * block.expansion), )
- elif self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.utils.spectral_norm(
- conv1x1(self.inplanes, planes * block.expansion, stride)),
- norm_layer(planes * block.expansion), )
- layers = [block(self.inplanes, planes, stride, downsample, norm_layer)]
- self.inplanes = planes * block.expansion
- for _ in range(1, block_num):
- layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.activation(x)
- x = self.conv2(x)
- x = self.bn2(x)
- x1 = self.activation(x) # N x 32 x 256 x 256
- x = self.conv3(x1)
- x = self.bn3(x)
- x2 = self.activation(x) # N x 64 x 128 x 128
- x3 = self.layer1(x2) # N x 64 x 128 x 128
- x4 = self.layer2(x3) # N x 128 x 64 x 64
- x5 = self.layer3(x4) # N x 256 x 32 x 32
- x = self.layer_bottleneck(x5) # N x 512 x 16 x 16
- return x, (x1, x2, x3, x4, x5)
- def init_weight(self):
- for layer in self.sublayers():
- if isinstance(layer, nn.Conv2D):
- if hasattr(layer, "weight_orig"):
- param = layer.weight_orig
- else:
- param = layer.weight
- param_init.xavier_uniform(param)
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
- param_init.constant_init(layer.weight, value=1.0)
- param_init.constant_init(layer.bias, value=0.0)
- elif isinstance(layer, BasicBlock):
- param_init.constant_init(layer.bn2.weight, value=0.0)
- if self.pretrained is not None:
- utils.load_pretrained_model(self, self.pretrained)
- @manager.MODELS.add_component
- class ResShortCut_D(ResNet_D):
- def __init__(self,
- input_channels,
- layers,
- late_downsample=False,
- pretrained=None):
- super().__init__(
- input_channels,
- layers,
- late_downsample=late_downsample,
- pretrained=pretrained)
- self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256]
- self.shortcut_plane = [32, self.midplanes, 64, 128, 256]
- self.shortcut = nn.LayerList()
- for stage, inplane in enumerate(self.shortcut_inplane):
- self.shortcut.append(
- self._make_shortcut(inplane, self.shortcut_plane[stage]))
- def _make_shortcut(self, inplane, planes):
- return nn.Sequential(
- nn.utils.spectral_norm(
- nn.Conv2D(
- inplane, planes, kernel_size=3, padding=1,
- bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(planes),
- nn.utils.spectral_norm(
- nn.Conv2D(
- planes, planes, kernel_size=3, padding=1, bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(planes))
- def forward(self, x):
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.activation(out)
- out = self.conv2(out)
- out = self.bn2(out)
- x1 = self.activation(out) # N x 32 x 256 x 256
- out = self.conv3(x1)
- out = self.bn3(out)
- out = self.activation(out)
- x2 = self.layer1(out) # N x 64 x 128 x 128
- x3 = self.layer2(x2) # N x 128 x 64 x 64
- x4 = self.layer3(x3) # N x 256 x 32 x 32
- out = self.layer_bottleneck(x4) # N x 512 x 16 x 16
- fea1 = self.shortcut[0](x) # input image and trimap
- fea2 = self.shortcut[1](x1)
- fea3 = self.shortcut[2](x2)
- fea4 = self.shortcut[3](x3)
- fea5 = self.shortcut[4](x4)
- return out, {
- 'shortcut': (fea1, fea2, fea3, fea4, fea5),
- 'image': x[:, :3, ...]
- }
- @manager.MODELS.add_component
- class ResGuidedCxtAtten(ResNet_D):
- def __init__(self,
- input_channels,
- layers,
- late_downsample=False,
- pretrained=None):
- super().__init__(
- input_channels,
- layers,
- late_downsample=late_downsample,
- pretrained=pretrained)
- self.input_channels = input_channels
- self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256]
- self.shortcut_plane = [32, self.midplanes, 64, 128, 256]
- self.shortcut = nn.LayerList()
- for stage, inplane in enumerate(self.shortcut_inplane):
- self.shortcut.append(
- self._make_shortcut(inplane, self.shortcut_plane[stage]))
- self.guidance_head = nn.Sequential(
- nn.Pad2D(
- 1, mode="reflect"),
- nn.utils.spectral_norm(
- nn.Conv2D(
- 3, 16, kernel_size=3, padding=0, stride=2,
- bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(16),
- nn.Pad2D(
- 1, mode="reflect"),
- nn.utils.spectral_norm(
- nn.Conv2D(
- 16, 32, kernel_size=3, padding=0, stride=2,
- bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(32),
- nn.Pad2D(
- 1, mode="reflect"),
- nn.utils.spectral_norm(
- nn.Conv2D(
- 32,
- 128,
- kernel_size=3,
- padding=0,
- stride=2,
- bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(128))
- self.gca = GuidedCxtAtten(128, 128)
- self.init_weight()
- def init_weight(self):
- for layer in self.sublayers():
- if isinstance(layer, nn.Conv2D):
- initializer = nn.initializer.XavierUniform()
- if hasattr(layer, "weight_orig"):
- param = layer.weight_orig
- else:
- param = layer.weight
- initializer(param, param.block)
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
- param_init.constant_init(layer.weight, value=1.0)
- param_init.constant_init(layer.bias, value=0.0)
- elif isinstance(layer, BasicBlock):
- param_init.constant_init(layer.bn2.weight, value=0.0)
- if self.pretrained is not None:
- utils.load_pretrained_model(self, self.pretrained)
- def _make_shortcut(self, inplane, planes):
- return nn.Sequential(
- nn.utils.spectral_norm(
- nn.Conv2D(
- inplane, planes, kernel_size=3, padding=1,
- bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(planes),
- nn.utils.spectral_norm(
- nn.Conv2D(
- planes, planes, kernel_size=3, padding=1, bias_attr=False)),
- nn.ReLU(),
- self._norm_layer(planes))
- def forward(self, x):
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.activation(out)
- out = self.conv2(out)
- out = self.bn2(out)
- x1 = self.activation(out) # N x 32 x 256 x 256
- out = self.conv3(x1)
- out = self.bn3(out)
- out = self.activation(out)
- im_fea = self.guidance_head(
- x[:, :3, ...]) # downsample origin image and extract features
- if self.input_channels == 6:
- unknown = F.interpolate(
- x[:, 4:5, ...], scale_factor=1 / 8, mode='nearest')
- else:
- unknown = x[:, 3:, ...].equal(paddle.to_tensor([1.]))
- unknown = paddle.cast(unknown, dtype='float32')
- unknown = F.interpolate(unknown, scale_factor=1 / 8, mode='nearest')
- x2 = self.layer1(out) # N x 64 x 128 x 128
- x3 = self.layer2(x2) # N x 128 x 64 x 64
- x3 = self.gca(im_fea, x3, unknown) # contextual attention
- x4 = self.layer3(x3) # N x 256 x 32 x 32
- out = self.layer_bottleneck(x4) # N x 512 x 16 x 16
- fea1 = self.shortcut[0](x) # input image and trimap
- fea2 = self.shortcut[1](x1)
- fea3 = self.shortcut[2](x2)
- fea4 = self.shortcut[3](x3)
- fea5 = self.shortcut[4](x4)
- return out, {
- 'shortcut': (fea1, fea2, fea3, fea4, fea5),
- 'image_fea': im_fea,
- 'unknown': unknown,
- }
- class BasicBlock(nn.Layer):
- expansion = 1
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- downsample=None,
- norm_layer=None):
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = nn.utils.spectral_norm(conv3x3(inplanes, planes, stride))
- self.bn1 = norm_layer(planes)
- self.activation = nn.ReLU()
- self.conv2 = nn.utils.spectral_norm(conv3x3(planes, planes))
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.activation(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.activation(out)
- return out
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias_attr=False,
- dilation=dilation)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2D(
- in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
|