123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import cv2
- import numpy as np
- import time
- import paddle
- import paddle.nn.functional as F
- from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar
- from ppmatting.metrics import metrics_class_dict
- np.set_printoptions(suppress=True)
- def save_alpha_pred(alpha, path):
- """
- The value of alpha is range [0, 1], shape should be [h,w]
- """
- dirname = os.path.dirname(path)
- if not os.path.exists(dirname):
- os.makedirs(dirname)
- alpha = (alpha).astype('uint8')
- cv2.imwrite(path, alpha)
- def reverse_transform(alpha, trans_info):
- """recover pred to origin shape"""
- for item in trans_info[::-1]:
- if item[0][0] == 'resize':
- h, w = item[1][0], item[1][1]
- alpha = F.interpolate(alpha, [h, w], mode='bilinear')
- elif item[0][0] == 'padding':
- h, w = item[1][0], item[1][1]
- alpha = alpha[:, :, 0:h, 0:w]
- else:
- raise Exception("Unexpected info '{}' in im_info".format(item[0]))
- return alpha
- def evaluate(model,
- eval_dataset,
- num_workers=0,
- print_detail=True,
- save_dir='output/results',
- save_results=True,
- metrics='sad',
- precision='fp32',
- amp_level='O1'):
- model.eval()
- nranks = paddle.distributed.ParallelEnv().nranks
- local_rank = paddle.distributed.ParallelEnv().local_rank
- if nranks > 1:
- # Initialize parallel environment if not done.
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
- ):
- paddle.distributed.init_parallel_env()
- loader = paddle.io.DataLoader(
- eval_dataset,
- batch_size=1,
- drop_last=False,
- num_workers=num_workers,
- return_list=True, )
- total_iters = len(loader)
- # Get metric instances and data saving
- metrics_ins = {}
- metrics_data = {}
- if isinstance(metrics, str):
- metrics = [metrics]
- elif not isinstance(metrics, list):
- metrics = ['sad']
- for key in metrics:
- key = key.lower()
- metrics_ins[key] = metrics_class_dict[key]()
- metrics_data[key] = None
- if print_detail:
- logger.info("Start evaluating (total_samples: {}, total_iters: {})...".
- format(len(eval_dataset), total_iters))
- progbar_val = progbar.Progbar(
- target=total_iters, verbose=1 if nranks < 2 else 2)
- reader_cost_averager = TimeAverager()
- batch_cost_averager = TimeAverager()
- batch_start = time.time()
- img_name = ''
- i = 0
- with paddle.no_grad():
- for iter, data in enumerate(loader):
- reader_cost_averager.record(time.time() - batch_start)
- if precision == 'fp16':
- with paddle.amp.auto_cast(
- level=amp_level,
- enable=True,
- custom_white_list={
- "elementwise_add", "batch_norm", "sync_batch_norm"
- },
- custom_black_list={'bilinear_interp_v2', 'pad3d'}):
- alpha_pred = model(data)
- alpha_pred = reverse_transform(alpha_pred,
- data['trans_info'])
- else:
- alpha_pred = model(data)
- alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
- alpha_pred = alpha_pred.numpy()
- alpha_gt = data['alpha'].numpy() * 255
- trimap = data.get('ori_trimap')
- if trimap is not None:
- trimap = trimap.numpy().astype('uint8')
- alpha_pred = np.round(alpha_pred * 255)
- for key in metrics_ins.keys():
- metrics_data[key] = metrics_ins[key].update(alpha_pred,
- alpha_gt, trimap)
- if save_results:
- alpha_pred_one = alpha_pred[0].squeeze()
- if trimap is not None:
- trimap = trimap.squeeze().astype('uint8')
- alpha_pred_one[trimap == 255] = 255
- alpha_pred_one[trimap == 0] = 0
- save_name = data['img_name'][0]
- name, ext = os.path.splitext(save_name)
- if save_name == img_name:
- save_name = name + '_' + str(i) + ext
- i += 1
- else:
- img_name = save_name
- save_name = name + '_' + str(i) + ext
- i = 1
- save_alpha_pred(alpha_pred_one,
- os.path.join(save_dir, save_name))
- batch_cost_averager.record(
- time.time() - batch_start, num_samples=len(alpha_gt))
- batch_cost = batch_cost_averager.get_average()
- reader_cost = reader_cost_averager.get_average()
- if local_rank == 0 and print_detail:
- show_list = [(k, v) for k, v in metrics_data.items()]
- show_list = show_list + [('batch_cost', batch_cost),
- ('reader cost', reader_cost)]
- progbar_val.update(iter + 1, show_list)
- reader_cost_averager.reset()
- batch_cost_averager.reset()
- batch_start = time.time()
- for key in metrics_ins.keys():
- metrics_data[key] = metrics_ins[key].evaluate()
- log_str = '[EVAL] '
- for key, value in metrics_data.items():
- log_str = log_str + key + ': {:.4f}, '.format(value)
- log_str = log_str[:-2]
- logger.info(log_str)
- return metrics_data
|